Skip to main content

Advertisement

Log in

Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid–liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Amphetamine

CLB:

Clenbuterol

CV:

Coefficient of variation

EGDMA:

Ethylene glycol dimethacrylate

EPI:

Epinephrine

ESI:

Electrospray ionization

GMA:

Glycidyl methacrylate

LC:

Liquid chromatography

LLE:

Liquid–liquid extraction

LOD:

Limit of detection

LOQ:

Limit of quantification

MA:

Methamphetamine

MAA:

Methacrylic acid

MDA:

3,4-Methylenedioxyamphetamine

MDMA:

3,4-Methylenedioxymethamphetamine

MET:

Metanephrine

MIP:

Molecularly imprinted polymer

MS:

Mass spectrometry

NORMET:

Normetanephrine

PPT:

Protein precipitation

QC:

Quality control

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

UV:

Ultraviolet

WCX:

Weak cation exchange

2D:

Two-dimensional

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

References

  1. Van Eeckhaut A, Lanckmans K, Sarre S, Smolders I, Michotte Y (2009) Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects. J Chromatogr B 877(23):2198–2207

    Article  Google Scholar 

  2. Walker V, Mills GA (2002) Solid-phase extraction in clinical biochemistry. Ann Clin Biochem 39(Pt 5):464–477

    Article  CAS  Google Scholar 

  3. Siouffi AM (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000(1–2):801–818

    CAS  Google Scholar 

  4. Svec F (2010) Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924

    Article  CAS  Google Scholar 

  5. Nema T, Chan EC, Ho PC (2011) Efficiency of a miniaturized silica monolithic cartridge in reducing matrix ions as demonstrated in the simultaneous extraction of morphine and codeine from urine samples for quantification with liquid chromatography–tandem mass spectrometry (LC-MS/MS). J Mass Spectrom 46(9):891–900

    Article  CAS  Google Scholar 

  6. Gabler J, Yuan C, Woroniecki W, Liu H, Wang S (2012) A sensitive and interference-free liquid chromatography tandem mass spectrometry method for measuring metanephrines in plasma. J Chromatogr Sep Tech S2 (001)

  7. Nema T, Chan EC, Ho PC (2010) Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine. Talanta 82(2):488–494

    Article  CAS  Google Scholar 

  8. Veuthey JL, Souverain S, Rudaz S (2004) Column-switching procedures for the fast analysis of drugs in biologic samples. Ther Drug Monit 26(2):161–166

    Article  CAS  Google Scholar 

  9. Crinnion WJ (2010) Toxic effects of the easily avoidable phthalates and parabens. Altern Med Rev 15(3):190–196

    Google Scholar 

  10. Kato K, Silva MJ, Needham LL, Calafat AM (2005) Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 77(9):2985–2991

    Article  CAS  Google Scholar 

  11. Xu RN, Boyd B, Rieser MJ, El-Shourbagy TA (2007) Simultaneous LC-MS/MS quantitation of a highly hydrophobic pharmaceutical compound and its metabolite in urine using online monolithic phase-based extraction. J Sep Sci 30(17):2943–2949

    Article  CAS  Google Scholar 

  12. Naxing Xu R, Fan L, Kim GE, El-Shourbagy TA (2006) A monolithic-phase based on-line extraction approach for determination of pharmaceutical components in human plasma by HPLC-MS/MS and a comparison with liquid-liquid extraction. J Pharm Biomed Anal 40(3):728–736

    Article  CAS  Google Scholar 

  13. Yang G, Feng S, Liu H, Yin J, Zhang L, Cai L (2007) On-line clean-up and screening of oxacillin and cloxacillin in human urine and plasma with a weak ion exchange monolithic column. J Chromatogr B Anal Technol Biomed Life Sci 854(1–2):85–90

    Article  CAS  Google Scholar 

  14. Wei X, Yin J, Yang G, He C, Chen Y (2007) On-line solid-phase extraction with a monolithic weak cation-exchange column and simultaneous screening of alpha1-adrenergic receptor antagonists in human plasma. J Sep Sci 30(17):2851–2857

    Article  CAS  Google Scholar 

  15. Wu J, Pawliszyn J (2001) Polypyrrole-coated capillary coupled to HPLC for in-tube solid-phase microextraction and analysis of aromatic compounds in aqueous samples. Anal Chem 73(1):55–63

    Article  CAS  Google Scholar 

  16. Wen Y, Fan Y, Zhang M, Feng YQ (2005) Determination of camptothecin and 10-hydroxycamptothecin in human plasma using polymer monolithic in-tube solid phase microextraction combined with high-performance liquid chromatography. Anal Bioanal Chem 382(1):204–210

    Article  CAS  Google Scholar 

  17. Natelson EA, Giovanella BC, Verschraegen CF, Fehir KM, De Ipolyi PD, Harris N, Stehlin JS (1996) Phase I clinical and pharmacological studies of 20-(S)-Camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann N Y Acad Sci 803(1):224–230

    Article  CAS  Google Scholar 

  18. Fan Y, Feng YQ, Zhang JT, Da SL, Zhang M (2005) Poly(methacrylic acid–ethylene glycol dimethacrylate) monolith in-tube solid phase microextraction coupled to high performance liquid chromatography and analysis of amphetamines in urine samples. J Chromatogr A 1074(1–2):9–16

    CAS  Google Scholar 

  19. Wen Y, Wang Y, Feng YQ (2007) Extraction of clenbuterol from urine using hydroxylated poly(glycidyl methacrylate–co-ethylene dimethacrylate) monolith microextraction followed by high-performance liquid chromatography determination. J Sep Sci 30(17):2874–2880

    Article  CAS  Google Scholar 

  20. Zheng MM, Zhang MY, Feng YQ (2009) Polymer monolith microextraction online coupled to hydrophilic interaction chromatography/mass spectrometry for analysis of beta2-agonist in human urine. J Sep Sci 32(11):1965–1974

    Article  CAS  Google Scholar 

  21. Nema T, Chan EC, Ho PC (2011) Extraction of ketamine from urine using a miniature silica monolithic cartridge followed by quantification with liquid chromatography tandem mass spectrometry (LC-MS/MS). J Sep Sci 34(9):1041–1046

    Article  CAS  Google Scholar 

  22. Fan Y, Feng YQ, Da SL, Gao XP (2004) In-tube solid-phase microextraction with poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary for direct high-performance liquid chromatographic determination of ketamine in urine samples. Analyst 129(11):1065–1069

    Article  CAS  Google Scholar 

  23. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2' -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139

    Article  CAS  Google Scholar 

  24. Zhang SW, Xing J, Cai LS, Wu CY (2009) Molecularly imprinted monolith in-tube solid-phase microextraction coupled with HPLC/UV detection for determination of 8-hydroxy-2'-deoxyguanosine in urine. Anal Bioanal Chem 395(2):479–487

    Article  CAS  Google Scholar 

  25. Nie J, Zhang M, Fan Y, Wen Y, Xiang B, Feng YQ (2005) Biocompatible in-tube solid-phase microextraction coupled to HPLC for the determination of angiotensin II receptor antagonists in human plasma and urine. J Chromatogr B Anal Technol Biomed Life Sci 828(1–2):62–69

    Article  CAS  Google Scholar 

  26. Altun Z, Skoglund C, Abdel-Rehim M Monolithic methacrylate packed 96-tips for high throughput bioanalysis. J Chromatogr A 1217 (16):2581–2588

  27. Blomberg LG (2009) Two new techniques for sample preparation in bioanalysis: microextraction in packed sorbent (MEPS) and use of a bonded monolith as sorbent for sample preparation in polypropylene tips for 96-well plates. Anal Bioanal Chem 393(3):797–807

    Article  CAS  Google Scholar 

  28. Kumazawa T, Hasegawa C, Lee XP, Hara K, Seno H, Suzuki O, Sato K (2007) Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal 44(2):602–607

    Article  CAS  Google Scholar 

  29. Hasegawa C, Kumazawa T, Lee XP, Marumo A, Shinmen N, Seno H, Sato K (2007) Pipette tip solid-phase extraction and gas chromatography - mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood. Anal Bioanal Chem 389(2):563–570

    Article  CAS  Google Scholar 

  30. Hasegawa C, Kumazawa T, Lee XP, Fujishiro M, Kuriki A, Marumo A, Seno H, Sato K (2006) Simultaneous determination of ten antihistamine drugs in human plasma using pipette tip solid-phase extraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20(4):537–543

    Article  CAS  Google Scholar 

  31. Hasegawa C, Kumazawa T, Uchigasaki S, Lee XP, Sato K, Terada M, Kurosaki K (2011) Determination of dextromethorphan in human plasma using pipette tip solid-phase extraction and gas chromatography-mass spectrometry. Anal Bioanal Chem 401(7):2215–2223

    Article  CAS  Google Scholar 

  32. Hasegawa C, Kumazawa T, Terada M, Lee XP, Sato K, Uchigasaki S, Kurosaki K (2012) A new method for quantitative determination of dimemorfan in human plasma using monolithic silica solid-phase extraction tips. Leg Med (Tokyo) 14(5):267–271

    Article  CAS  Google Scholar 

  33. Kumazawa T, Hasegawa C, Lee XP, Marumo A, Shimmen N, Ishii A, Seno H, Sato K (2006) Pipette tip solid-phase extraction and gas chromatography–mass spectrometry for the determination of mequitazine in human plasma. Talanta 70(2):474–478

    Article  CAS  Google Scholar 

  34. Kumazawa T, Hasegawa C, Uchigasaki S, Lee XP, Suzuki O, Sato K (2011) Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. J Chromatogr A 1218(18):2521–2527

    Article  CAS  Google Scholar 

  35. Lee XP, Hasegawa C, Kumazawa T, Shinmen N, Shoji Y, Seno H, Sato K (2008) Determination of tricyclic antidepressants in human plasma using pipette tip solid-phase extraction and gas chromatography-mass spectrometry. J Sep Sci 31(12):2265–2271

    Article  CAS  Google Scholar 

  36. Nakamoto A, Nishida M, Saito T, Kishiyama I, Miyazaki S, Murakami K, Nagao M, Namura A (2010) Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic–mass spectrometric detection. Anal Chim Acta 661(1):42–46

    Article  CAS  Google Scholar 

  37. Saito T, Yamamoto R, Inoue S, Kishiyama I, Miyazaki S, Nakamoto A, Nishida M, Namera A, Inokuchi S (2008) Simultaneous determination of amitraz and its metabolite in human serum by monolithic silica spin column extraction and liquid chromatography–mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 867(1):99–104

    Article  CAS  Google Scholar 

  38. Saito T, Morita S, Kishiyama I, Miyazaki S, Nakamoto A, Nishida M, Namera A, Nagao M, Inokuchi S (2008) Simultaneous determination of dibucaine and naphazoline in human serum by monolithic silica spin column extraction and liquid chromatography–mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 872(1–2):186–190

    Article  CAS  Google Scholar 

Download references

Authors’ disclosures of potential conflicts of interest

No authors declared any potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihe Wang.

Additional information

Author contributions

All authors have contributed to the intellectual content of this paper and have met three requirements:

1. significant contributions to concept and design, acquisition of data, or analysis and interpretation of data;

2. drafting or revision of the article for intellectual content; and

3. final approval of the published article.

Published in the topical collection Monolithic Columns in Liquid Phase Separations with guest editor Luis A. Colon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunch, D.R., Wang, S. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays. Anal Bioanal Chem 405, 3021–3033 (2013). https://doi.org/10.1007/s00216-013-6761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6761-0

Keywords

Navigation