Skip to main content
Log in

Laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry applied for the ultra-fast quantitative analysis of BKM120 in human plasma

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and ultra-fast method utilizing the laser diode thermal desorption ion source using atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS) was developed for the quantitative analysis of BKM120, an investigational anticancer drug in human plasma. Samples originating from protein precipitation (PP) followed by salting-out assisted liquid-liquid extraction (SALLE) were spotted onto the LazWell™ plate prior to their thermal desorption and detection by tandem mass spectrometry in positive mode. The validated method described in this paper presents a high absolute extraction recovery (>90 %) for BKM120 and its internal standard (ISTD) [D8]BKM120, with precision and accuracy meeting the acceptance criteria. Standard curves were linear over the range of 5.00 to 2000 ng mL−1 with a coefficient of determination (R 2) >0.995. The method specificity was demonstrated in six different batches of human plasma. Intra- and inter-run precision as well as accuracy within ±20 % at the lower limit of quantification (LLOQ) and ±15 % (other levels) were achieved during a three-run validation for quality control (QC) samples. The post-preparative stability on the LazWell™ plate at room temperature was 72 h and a 200-fold dilution of spiked samples was demonstrated. The method was applied successfully to three clinical studies (n = 847) and cross-checked with the validated LC-ESI-MS/MS reference method. The sample analysis run time was 10 s as compared to 4.5 min for the current validated LC-ESI-MS/MS method. The resultant data were in agreement with the results obtained using the validated reference LC-ESI-MS/MS assay and the same pharmacokinetic (PK) parameters were calculated for both analytical assays. This work demonstrates that LDTD-APCI-MS/MS is a reliable method for the ultra-fast quantitative analysis of BKM120 which can be used to speed-up and support its bioanalysis in the frame of the clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal M (2000) High-throughput quantitative bioanalysis by LC/MS/MS. Biomed Chromatogr 14(6):422–429. doi:10.1002/1099-0801(200010)14:6<422::AID-BMC25>3.0.CO;2-I

    Article  CAS  Google Scholar 

  2. Tiller P, Romanyshyn L, Neue U (2003) Fast LC/MS in the analysis of small molecules. Anal Bioanal Chem 377(5):788–802. doi:10.1007/s00216-003-2146-0

    Article  CAS  Google Scholar 

  3. Xu RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J Pharm Biomed Anal 44(2):342–355. doi:10.1016/j.jpba.2007.02.006

    Article  CAS  Google Scholar 

  4. Kalovidouris M, Michalea S, Robola N, Koutsopoulou M, Panderi I (2006) Ultra-performance liquid chromatography/tandem mass spectrometry method for the determination of lercanidipine in human plasma. Rapid Commun Mass Spectrom 20(19):2939–2946. doi:10.1002/rcm.2693

    Article  CAS  Google Scholar 

  5. Yu K, Little D, Plumb R, Smith B (2006) High-throughput quantification for a drug mixture in rat plasma—a comparison of Ultra Performance™ liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(4):544–552. doi:10.1002/rcm.2336

    Article  CAS  Google Scholar 

  6. Hsieh Y, Duncan CJG, Brisson J-M (2007) Fused-core silica column high-performance liquid chromatography/tandem mass spectrometric determination of rimonabant in mouse plasma. Anal Chem 79(15):5668–5673. doi:10.1021/ac070343g

    Article  CAS  Google Scholar 

  7. Mallett DN, Ramírez-Molina C (2009) The use of partially porous particle columns for the routine, generic analysis of biological samples for pharmacokinetic studies in drug discovery by reversed-phase ultra-high performance liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 49(1):100–107. doi:10.1016/j.jpba.2008.09.041

    Article  CAS  Google Scholar 

  8. Badman ER, Beardsley RL, Liang Z, Bansal S (2010) Accelerating high quality bioanalytical LC/MS/MS assays using fused-core columns. J Chromatogr B 878(25):2307–2313. doi:10.1016/j.jchromb.2010.06.032

    Article  CAS  Google Scholar 

  9. Murphy AT, Berna MJ, Holsapple JL, Ackermann BL (2002) Effects of flow rate on high-throughput quantitative analysis of protein-precipitated plasma using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 16(6):537–543. doi:10.1002/rcm.606

    Article  CAS  Google Scholar 

  10. De Nardi C, Bonelli F (2006) Moving from fast to ballistic gradient in liquid chromatography/tandem mass spectrometry pharmaceutical bioanalysis: matrix effect and chromatographic evaluations. Rapid Commun Mass Spectrom 20(18):2709–2716. doi:10.1002/rcm.2649

    Article  Google Scholar 

  11. Heinig K, Bucheli F (2003) Ultra-fast quantitative bioanalysis of a pharmaceutical compound using liquid chromatography-tandem mass spectrometry. J Chromatogr B 795(2):337–346. doi:10.1016/S1570-0232(03)00603-2

    Article  CAS  Google Scholar 

  12. Wu J, Hughes CS, Picard P, Letarte S, Gaudreault M, Levesque JF, Nicoll-Griffith DA, Bateman KP (2007) High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem 79(12):4657–4665. doi:10.1021/Ac070221o

    Article  CAS  Google Scholar 

  13. Fayad PB, BV ML, Sauvé S (2009) Laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry analysis of selected steroid hormones in wastewater: method optimization and application. Anal Chem 82(2):639–645. doi:10.1021/ac902074x

    Article  Google Scholar 

  14. Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY (2012) Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta 99:247–255. doi:10.1016/j.talanta.2012.05.047

    Article  CAS  Google Scholar 

  15. Duy SV, Fayad PB, Barbeau B, Prevost M, Sauve S (2012) Using a novel sol-gel stir bar sorptive extraction method for the analysis of steroid hormones in water by laser diode thermal desorption/atmospheric chemical ionization tandem mass spectrometry. Talanta 101:337–345. doi:10.1016/j.talanta.2012.09.036

    Article  Google Scholar 

  16. Badjagbo K, Sauve S (2012) High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem 84(13):5731–5736. doi:10.1021/Ac300918f

    Article  CAS  Google Scholar 

  17. Blachon G, Picard P, Tremblay P, Demers S, Paquin R, Babin Y, Fayad PB (2013) Rapid determination of chloramphenicol in honey by laser diode thermal desorption using atmospheric pressure chemical ionization-tandem mass spectrometry. J AOAC Int 96(3):676–679. doi:10.5740/jaoacint.12-066

    Article  CAS  Google Scholar 

  18. Lohne JJ, Andersen WC, Clark SB, Turnipseed SB, Madson MR (2012) Laser diode thermal desorption mass spectrometry for the analysis of quinolone antibiotic residues in aquacultured seafood. Rapid Commun Mass Spectrom 26(24):2854–2864. doi:10.1002/Rcm.6414

    Article  CAS  Google Scholar 

  19. Segura PA, Tremblay P, Picard P, Gagnon C, Sauvé SB (2010) High-throughput quantitation of seven sulfonamide residues in dairy milk using laser diode thermal desorption-negative mode atmospheric pressure chemical ionization tandem mass spectrometry. J Agric Food Chem 58(3):1442–1446. doi:10.1021/jf903362v

    Article  CAS  Google Scholar 

  20. Lemoine P, Roy-Lachapelle A, Prevost M, Tremblay P, Solliec M, Sauve S (2013) Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: validation and resolution from phenylalanine. Toxicon 61:165–174. doi:10.1016/j.toxicon.2012.10.021

    Article  CAS  Google Scholar 

  21. Jourdil JF, Picard P, Meunier C, Auger S, Stanke-Labesque F (2013) Ultra-fast cyclosporin A quantitation in whole blood by laser diode thermal desorption-tandem mass spectrometry; comparison with high performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 805:80–86. doi:10.1016/j.aca.2013.10.051

    Article  CAS  Google Scholar 

  22. Swales JG, Temesi DG, Denn M, Murphy K (2012) Determination of paracetamol in mouse, rat and dog plasma samples by laser diode thermal desorption-APCI-MS/MS. Bioanalysis 4(11):1327–1335. doi:10.4155/Bio.12.68

    Article  CAS  Google Scholar 

  23. Beattie I, Smith A, Weston DJ, White P, Szwandt S, Sealey L (2012) Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries. J Pharm Biomed Anal 59(0):18–28. doi:10.1016/j.jpba.2011.10.014

    Article  CAS  Google Scholar 

  24. Swales JG, Gallagher RT, Denn M, Peter RM (2011) Simultaneous quantitation of metformin and sitagliptin from mouse and human dried blood spots using laser diode thermal desorption tandem mass spectrometry. J Pharm Biomed Anal 55(3):544–551. doi:10.1016/j.jpba.2011.02.030

    Article  CAS  Google Scholar 

  25. Heudi O, Barteau S, Picard P, Tremblay P, Picard F, Kretz O (2011) Laser diode thermal desorption-positive mode atmospheric pressure chemical ionization tandem mass spectrometry for the ultra-fast quantification of a pharmaceutical compound in human plasma. J Pharm Biomed Anal 54(5):1088–1095. doi:10.1016/j.jpba.2010.11.025

    Article  CAS  Google Scholar 

  26. Swales JG, Gallagher R, Peter RM (2010) Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry. J Pharm Biomed Anal 53(3):740–744. doi:10.1016/j.jpba.2010.04.033

    Article  CAS  Google Scholar 

  27. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J (2012) Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 30(3):282–290. doi:10.1200/JCO.2011.36.1360

    Article  CAS  Google Scholar 

  28. Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M, Laborde L, Hattenberger M, Stauffer F, Vaxelaire J, Romanet V, Henry C, Murakami M, Guthy DA, Sterker D, Bergling S, Wilson C, Brummendorf T, Fritsch C, Garcia-Echeverria C, Sellers WR, Hofmann F, Maira SM (2012) Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther 11(8):1747–1757. doi:10.1158/1535-7163.MCT-11-1021

    Article  CAS  Google Scholar 

  29. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, Brachmann S, Fritsch C, Dorsch M, Chene P, Shoemaker K, De Pover A, Menezes D, Martiny-Baron G, Fabbro D, Wilson CJ, Schlegel R, Hofmann F, Garcia-Echeverria C, Sellers WR, Voliva CF (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11(2):317–328. doi:10.1158/1535-7163.MCT-11-0474

    Article  CAS  Google Scholar 

  30. Mueller A, Bachmann E, Linnig M, Khillimberger K, Schimanski CC, Galle PR, Moehler M (2012) Selective PI3K inhibition by BKM120 and BEZ235 alone or in combination with chemotherapy in wild-type and mutated human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol 69(6):1601–1615. doi:10.1007/s00280-012-1869-z

    Article  CAS  Google Scholar 

  31. Guidance for Industry: Bioanalytical Method Validation US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Rockville, MD (2001) Available from: http://www.fda.gov/CVM

  32. European Medicines Agency (2012) Guideline on bioanalytical method validation

  33. Altman DG, Bland JM (1983) Measurement in medicine—the analysis of method comparison studies. Statistician 32(3):307–317. doi:10.2307/2987937

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted in fulfillment for the degree of M. Sc. in Life Sciences (University of Applied Sciences Northwestern Switzerland, School of Life Sciences). As the LC-ESI-MS/MS assay was performed previously, we would like to thank Fabienne Schueller, Lucie Barotte and Marc Raccuglia for technical assistance. Furthermore, we would like to thank Eleni Dimitriadou (M. Sc.) for reviewing the manuscript from a language point of view.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Heudi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 63.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanshoeft, C., Heudi, O., Leuthold, L.A. et al. Laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry applied for the ultra-fast quantitative analysis of BKM120 in human plasma. Anal Bioanal Chem 406, 5413–5423 (2014). https://doi.org/10.1007/s00216-014-7966-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7966-6

Keywords

Navigation