Skip to main content
Log in

Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.

Rapid visual colorimetric detection of H2O2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  2. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  3. Zhang P, Wang H, Zhang X, Xu W, Li Y, Li Q, Wei G, Su Z (2015) Graphene film doped with silver nanoparticles: self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomater Sci 3:852–860

    Article  CAS  Google Scholar 

  4. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  Google Scholar 

  5. Chen Y, Shen Y, Sun D, Zhang H, Tian D, Zhang J, Zhu JJ (2011) Fabrication of a dispersible graphene/gold nanoclusters hybrid and its potential application in electrogenerated chemiluminescence. Chem Commun 47:11733–11735

    Article  CAS  Google Scholar 

  6. Zhao Q, Chen S, Huang H, Zhang L, Wang L, Liu F, Chen J, Zeng Y, Chu PK (2014) Colorimetric and ultra-sensitive fluorescence resonance energy transfer determination of H2O2 and glucose by multi-functional Au nanoclusters. Analyst 139:1498–1503

    Article  CAS  Google Scholar 

  7. Zhang J, Tu L, Zhao S, Liu G, Wang Y, Wang Y, Yue Z (2015) Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens Bioelectron 67:296–302

    Article  CAS  Google Scholar 

  8. Li J, Guo LR, Gao W, Xia XH, Zheng LM (2009) Enhanced electrochemiluminescence efficiency of Ru(II) derivative covalently linked carbon nanotubes hybrid. Chem Commun 7545–7547

  9. Xu M, Han JM, Wang C, Yang X, Pei J, Zang L (2014) Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide. ACS Appl Mater Interfaces 6:8708–8714

    Article  CAS  Google Scholar 

  10. Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196

    Article  CAS  Google Scholar 

  11. You X, Li Y (2015) Direct chemiluminescence of fluorescent gold nanoclusters with classic oxidants for hydrogen peroxide sensing. Arab J Chem. doi:10.1016/j.arabjc.2015.05.019

    Google Scholar 

  12. Li J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF (2014) A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf B: Biointerfaces 118:77–82

    Article  CAS  Google Scholar 

  13. Wu Y, Huang J, Zhou T, Rong M, Jiang Y, Chen X (2013) A novel solid-state electrochemiluminescence sensor for the determination of hydrogen peroxide based on an Au nanocluster-silica nanoparticle nanocomposite. Analyst 138:5563–5565

    Article  CAS  Google Scholar 

  14. Zhang Y, Yang W, Wang Y, Jia J, Wang J (2013) Nonenzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with electrospun PdO-NiO composite nanofibers. Microchim Acta 180:1085–1091

    Article  CAS  Google Scholar 

  15. Anitha S, Brabu B, Rajesh KP, Natarajan TS (2013) Fabrication of UV sensor based on electrospun composite fibers. Mater Lett 92:417–420

    Article  CAS  Google Scholar 

  16. Xiao X, Song Y, Liu H, Xie M, Hou H, Wang L, Li Z (2013) Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing. J Mater Sci 48:4843–4850

    Article  CAS  Google Scholar 

  17. Xu D, Li L, Ding Y, Cui S (2015) Electrochemical hydrogen peroxide sensors based on electrospun La0.7Sr0.3Mn0.75Co0.25O3 nanofiber modified electrodes. Anal Methods 7:6083–6088

    Article  CAS  Google Scholar 

  18. Lei Z, Liu X, Ma L, Liu D, Zhang H, Wang Z (2015) Spheres-on-sphere silica microspheres as matrix for horseradish peroxidase immobilization and detection of hydrogen peroxide. RSC Adv 5:38665–38672

    Article  CAS  Google Scholar 

  19. Khalid W, El HM, Murböck T, Yue Z, Montenegro JM, Schubert K, Göbel G, Lisdat F, Witte G, Parak WJ (2011) Immobilization of quantum dots via conjugated self-assembled monolayers and their application as a light-controlled sensor for the detection of hydrogen peroxide. ACS Nano 5:9870–9876

    Article  CAS  Google Scholar 

  20. Liu Q, Zhang T, Yu L, Jia N, Yang DP (2013) 3D nanoporous Ag@BSA composite microspheres as hydrogen peroxide sensors. Analyst 138:5559–5562

    Article  CAS  Google Scholar 

  21. Deng M, Xu S, Chen F (2014) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by BSA-stabilized Au nanoclusters as a peroxidase mimic and its application. Anal Methods 6:3117–3123

    Article  CAS  Google Scholar 

  22. Senthamizhan A, Celebioglu A, Uyar T (2015) Real-time selective visual monitoring of Hg2+ detection at ppt level: an approach to lighting electrospun nanofibers using gold nanoclusters. Sci Rep 5:10403

    Article  Google Scholar 

  23. Senthamizhan A, Uyar T (2015) In: Macagnano A, Zampetti E, Kny E (eds) Electrospinning for High Performance Sensors, 1st edn. Switzerland, Springer International Publishing

    Google Scholar 

  24. Senthamizhan A, Celebioglu A, Uyar T (2015) Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber. Chem Commun 51:5590–5593

    Article  CAS  Google Scholar 

  25. Senthamizhan A, Celebioglu A, Uyar T (2014) Flexible and highly stable electrospun nanofibrous membrane incorporating gold nanoclusters as an efficient probe for visual colorimetric detection of Hg(II). J Mater Chem A 2:12717–12723

    Article  CAS  Google Scholar 

  26. Su Z, Dinga J, Wei G (2014) Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv 4:52598–52610

    Article  CAS  Google Scholar 

  27. Andrade PF, de Faria AF, Oliveira SR, Arruda MA, Gonçalves Mdo C (2015) Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res 81:333–342

    Article  CAS  Google Scholar 

  28. Dahe GJ, Kadam SS, Sabale SS, Kadam DP, Sarkate LB, Bellare JR (2011) In vivo evaluation of the biocompatibility of surface modified hemodialysis polysulfone hollow fibers in rat. PLoS One 6, e25236

    Article  CAS  Google Scholar 

  29. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  Google Scholar 

  30. Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005

    Article  CAS  Google Scholar 

  31. Zheng C, Wang H, Xu W, Xu C, Liang J, Han H (2014) Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 118:897–902

    Article  CAS  Google Scholar 

  32. Wen T, Qu F, Li NB, Luo HQ (2012) Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal Chim Acta 749:56–62

    Article  CAS  Google Scholar 

  33. Molaabasi F, Hosseinkhani S, Moosavi-Movahedi AA, Shamsipur M (2015) Hydrogen peroxide sensitive hemoglobin-capped gold nanoclusters as a fluorescence enhancing sensor for the label-free detection of glucose. RSC Adv 5:33123–33135

    Article  CAS  Google Scholar 

  34. Li G, Zhu D, Liu Q, Xue L, Jiang H (2013) Rapid detection of hydrogen peroxide based on aggregation induced ratiometric fluorescence change. Org Lett 15:924–927

    Article  CAS  Google Scholar 

  35. Wang F, Liu X, Lu CH, Willner I (2013) Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7:7278–7286

    Article  CAS  Google Scholar 

  36. Raut S, Chib R, Rich R, Shumilov D, Gryczynski Z, Gryczynski I (2013) Polarization properties of fluorescent BSA protected Au25 nanoclusters. Nanoscale 5:3441–3446

    Article  CAS  Google Scholar 

  37. Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, Pan L, Gao G, Fu H, Fu S, Song H, Zhi X, Ni J, Cui D (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11:17

    Article  CAS  Google Scholar 

  38. Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, Yin J, Dong S (2011) Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron 26:1965–1969

    Article  CAS  Google Scholar 

  39. Le Guével X, Hötzer B, Jung G, Hollemeyer K, Trouillet V, Schneider M (2011) Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115:10955–10963

    Article  Google Scholar 

Download references

Acknowledgments

S.A. and B.B. thank the Scientific and Technological Research Council of Turkey (TÜBITAK) (TÜBITAK-BIDEB 2216, Research Fellowship Programme for Foreign Citizens) for postdoctoral fellowship funding. Z.A. thanks to TUBITAK-BIDEB (2211-C) for national PhD scholarship and TUBITAK (project no. 213 M185) for PhD scholarship. T.U acknowledges funding support of FP7-Marie Curie International Reintegration Grant (IRG) for funding NANOWEB (PIRG06-GA-2009-256428) and partial support of The Turkish Academy of Sciences – Outstanding Young Scientists Award Program (TUBA-GEBIP). The authors thank M. Guler for TEM-STEM technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anitha Senthamizhan or Tamer Uyar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Fiber-based Platforms for Bioanalytics with guest editors Antje J. Baeumner and R. Kenneth Marcus.

Anitha Senthamizhan and Brabu Balusamy contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 830 kb)

(MP4 39.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthamizhan, A., Balusamy, B., Aytac, Z. et al. Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2 . Anal Bioanal Chem 408, 1347–1355 (2016). https://doi.org/10.1007/s00216-015-9149-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9149-5

Keyword

Navigation