Skip to main content
Log in

Nonenzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with electrospun PdO-NiO composite nanofibers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA · mM−1 · cm−2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.

A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu XB, Zhou JH, Lu W, Liu Q, Li JH (2008) Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosens Bioelectron 23:1236–1243

    Article  CAS  Google Scholar 

  2. Shu XH, Chen Y, Yuan HY, Gao SF, Xiao D (2007) H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal Chem 79:3695–3702

    Article  CAS  Google Scholar 

  3. Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  4. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  5. Bo XJ, Bai J, Ju J, Guo LP (2010) A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Anal Chim Acta 675:29–35

    Article  CAS  Google Scholar 

  6. Chen KJ, Pillai KC, Ricka J, Pan CJ, Wang SH, Liu CC, Hwang BJ (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120–127

    Article  CAS  Google Scholar 

  7. Cao ZJ, Jiang XQ, Xie QJ, Yao SZ (2008) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in a tetrathiafulvalene–tetracyanoquinodimethane/multiwalled carbon nanotubes film. Biosens Bioelectron 24:222–227

    Article  CAS  Google Scholar 

  8. Ning R, Lu W, Zhang YW, Qin XY, Lou Y, Hu JM, Asiri AM, Al-Youbi AO, Sun XP (2012) A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochim Acta 60:13–16

    Article  CAS  Google Scholar 

  9. Yan ZK, Zhao JW, Qin LR, Mu F, Wang P, Feng XN (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180:145–150

    Article  CAS  Google Scholar 

  10. Liu AH, Geng HR, Xu CX, Qiu HJ (2011) A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal Chim Acta 703:172–178

    Article  CAS  Google Scholar 

  11. Wang Q, Zheng JB (2010) Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim Acta 169:361–365

    Article  CAS  Google Scholar 

  12. Dey RS, Raj CR (2010) Development of an Amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J Phys Chem C 114:21427–21433

    Article  CAS  Google Scholar 

  13. Kong LR, Lu XF, Bian XJ, Zhang WJ, Wang C (2010) Accurately tuning the dispersity and size of palladium particles on carbon spheres and using carbon spheres/palladium composite as support for polyaniline in H2O2 electrochemical sensing. Langmuir 26:5985–5990

    Article  CAS  Google Scholar 

  14. Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48:3027–3054

    Article  CAS  Google Scholar 

  15. Yudthavorasit S, Chiaochan C, Leepipatpiboon N (2011) Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchim Acta 172:39–49

    Article  CAS  Google Scholar 

  16. Zhao RS, Wang X, Sun J, Hu C, Wang XK (2011) Determination of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchim Acta 174:145–151

    Article  CAS  Google Scholar 

  17. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  18. Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448

    Article  CAS  Google Scholar 

  19. Zhang YQ, Wang YZ, Jia JB, Wang JG (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors Actuators B Chem 171–172:580–587

    Article  Google Scholar 

  20. Chen CS, Pan FM (2012) Effects of the PdO nanoflake support on electrocatalytic activity of Pt nanoparticles toward methanol oxidation in acidic solutions. J Power Sources 208:9–17

    Article  CAS  Google Scholar 

  21. Yang GC, Yang YS, Wang YZ, Yu LB, Zhou DF, Jia JB (2012) Controlled electrochemical behavior of indium tin oxide electrode modied with Pd nanoparticles via electrospinning followed by calcination toward nitrite ions. Electrochim Acta 78:200–204

    Article  CAS  Google Scholar 

  22. Wang W, Li ZY, Zheng W, Yang J, Zhang HN, Wang C (2009) Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors. Electrochem Commun 11:1811–1814

    Article  CAS  Google Scholar 

  23. Huang HZ (2003) The analysis of nanomaterial. Chemical Industry Press, Beijing

    Google Scholar 

  24. Barroso-Quiroga MM, Castro-Luna AE (2010) Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. Int J Hydrog Energy 35:6052–6056

    Article  CAS  Google Scholar 

  25. Liu J, Zhou WH, You TY, Li FL, Wang EK, Dong SJ (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium modified microdisk array electrode. Anal Chem 68:3350–3353

    Article  CAS  Google Scholar 

  26. Bian XJ, Guo K, Liao L, Xiao JJ, Kong JL, Ji C, Liu BH (2012) Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 99:256–261

    Article  CAS  Google Scholar 

  27. Liu XX, Zhu H, Yang XR (2011) An amperometric hydrogen peroxide chemical sensor based on graphene-Fe3O4 multilayer films modified ITO electrode. Talanta 87:243–248

    Article  CAS  Google Scholar 

  28. Lata S, Batra B, Karwasra N, Pundir CS (2012) An amperometric H2O2 biosensor based on cytochrome c immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode. Process Biochem 47:992–998

    Article  CAS  Google Scholar 

  29. Mohammadi A, Moghaddam AB, Kazemzad M, Dinarvand R, Badraghi J (2009) Synthesis of nickel oxides nanoparticles on glassy carbon as an electron transfer facilitator for horseradish peroxidase: Direct electron transfer and H2O2 determination. Math Sci Eng C Mater 29:1752–1758

    Article  CAS  Google Scholar 

  30. Shamsipur M, Asgari M, Mousavi MF, Davarkhah R (2012) A novel hydrogen peroxide sensor based on the direct electron transfer of catalase immobilized on nano-sized NiO/MWCNTs composite film. Electroanalysis 24:357–367

    Article  CAS  Google Scholar 

  31. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  32. Zhao HY, Zheng W, Meng ZX, Zhou HM, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352–2357

    Article  CAS  Google Scholar 

  33. Xu SY, Tu GL, Peng B, Han XZ (2006) Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres for fabrication of a mediatorless biosensor. Anal Chim Acta 570:151–157

    Article  CAS  Google Scholar 

  34. Luo J, Dong MN, Lin FB, Liu ML, Tang H, Li HT, Zhang YY, Yao SZ (2011) Three-dimensional network polyamidoamine dendrimer-Au nanocomposite for the construction of a mediator-free horseradish peroxidase biosensor. Analyst 136:4500–4506

    Article  CAS  Google Scholar 

  35. Guascito MR, Filippo E, Malitesta C, Manno D, Serra A, Turco A (2008) A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron 24:1057–1063

    Article  CAS  Google Scholar 

  36. Liu S, Tian JQ, Wang L, Li HL, Zhang YW, Sun XP (2010) Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083

    Article  CAS  Google Scholar 

  37. Lu WB, Liao F, Luo YL, Chang GH, Sun XP (2011) Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim Acta 56:2295–2298

    Article  CAS  Google Scholar 

  38. Kumar SA, Wang SF, Chang YT (2010) Poly(BCB)/Au-nanoparticles hybrid film modified electrode: preparation, characterization and its application as a non-enzymatic sensor. Thin Solid Films 518:5832–5838

    Article  CAS  Google Scholar 

  39. Chandra S, Lokesh KS, Nicolai A, Lang H (2009) Dendrimer-rhodium nanoparticle modified glassy carbon electrode for amperometric detection of hydrogen peroxide. Anal Chim Acta 632:63–68

    Article  CAS  Google Scholar 

  40. Zhong HA, Yuan R, Chai YQ, Zhang Y, Wang CY, Jia F (2012) Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Microchim Acta 176:389–395

    Article  CAS  Google Scholar 

  41. Chen KJ, Lee CF, Rick J, Wang SH, Liu CC, Hwang BJ (2012) Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multiwalled carbon nanotube catalyst. Biosens Bioelectron 33:75–81

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (20935003), the National Basic Research Program of China (No. 2010CB933603), and Innovation Team Fund of Liaoning Provincial Education Department (No. 2009 T40).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbo Jia or Jianguo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, W., Wang, Y. et al. Nonenzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with electrospun PdO-NiO composite nanofibers. Microchim Acta 180, 1085–1091 (2013). https://doi.org/10.1007/s00604-013-1033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1033-4

Keywords

Navigation