Skip to main content
Log in

Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An improved atmospheric pressure chemical ionization (APCI II) source for gas chromatography–high-resolution time-of-flight mass spectrometry (GC–HRTOFMS) was compared to its first-generation predecessor for the analysis of fatty acid methyl esters, methoxime-trimethylsilyl derivatives of metabolite standards, and cell culture supernatants. Reductions in gas turbulences and chemical background as well as optimized heating of the APCI II source resulted in narrower peaks and higher repeatability in particular for late-eluting compounds. Further, APCI II yielded a more than fourfold median decrease in lower limits of quantification to 0.002–3.91 μM along with an average 20 % increase in linear range to almost three orders of magnitude with R 2 values above 0.99 for all metabolite standards investigated. This renders the overall performance of GC–APCI–HRTOFMS comparable to that of comprehensive two-dimensional gas chromatography (GC × GC)–electron ionization (EI)–TOFMS. Finally, the number of peaks with signal-to-noise ratios greater than 20 that could be extracted from metabolite fingerprints of pancreatic cancer cell supernatants upon switching from the APCI I to the APCI II source was more than doubled. Concomitantly, the number of identified metabolites increased from 36 to 48. In conclusion, the improved APCI II source makes GC–APCI–HRTOFMS a great alternative to EI-based GC–MS techniques in metabolomics and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dunn WB (2008) Phys Biol 5:011001

    Article  Google Scholar 

  2. McEwen CN, McKay RG (2005) J Am Soc Mass Spectrom 16:1730–1738

    Article  CAS  Google Scholar 

  3. Schiewek R, Lorenz M, Giese R, Brockmann K, Benter T, Gab S, Schmitz OJ (2008) Anal Bioanal Chem 392:87–96

    Article  CAS  Google Scholar 

  4. Carrasco-Pancorbo A, Nevedomskaya E, Arthen-Engeland T, Zey T, Zurek G, Baessmann C, Deelder AM, Mayboroda OA (2009) Anal Chem 81:10071–10079

    Article  CAS  Google Scholar 

  5. Pacchiarotta T, Nevedomskaya E, Carrasco-Pancorbo A, Deelder AM, Mayboroda OA (2010) J Biomol Tech 21:205–213

    Google Scholar 

  6. Wachsmuth CJ, Almstetter MF, Waldhier MC, Gruber MA, Nürnberger N, Oefner PJ, Dettmer K (2011) Anal Chem 83:7514–7522

    Article  CAS  Google Scholar 

  7. Strehmel N, Kopka J, Scheel D, Böttcher C (2014) Metabolomics 10:324–336

    Article  CAS  Google Scholar 

  8. Jaeger C, Tellström V, Zurek G, König S, Eimer S, Kammerer B (2014) Metabolomics 10:859–876

    Article  CAS  Google Scholar 

  9. Wachsmuth CJ, Dettmer K, Lang SA, Mycielska ME, Oefner PJ (2014) Anal Chem 86:9186–9195

    Article  CAS  Google Scholar 

  10. Barrow MP, Peru KM, Headley JV (2014) Anal Chem 86:8281–8288

    Article  CAS  Google Scholar 

  11. David F, Sandra P, Hancock P (2011) LC-GC Eur 24:16–19

    CAS  Google Scholar 

  12. Garcia-Villalba R, Pacchiarotta T, Carrasco-Pancorbo A, Segura-Carretero A, Fernandez-Gutierrez A, Deelder AM, Mayboroda OA (2011) J Chromatogr A 1218:959–971

    Article  CAS  Google Scholar 

  13. Portoles T, Mol JG, Sancho JV, Hernandez F (2012) Anal Chem 84:9802–9810

    Article  CAS  Google Scholar 

  14. Matysik S, Schmitz G, Bauer S, Kiermaier J, Matysik FM (2014) Biochem Biophys Res Commun 446:751–755

    Article  CAS  Google Scholar 

  15. Bristow T, Harrison M, Sims M (2010) Rapid Commun Mass Spectrom 24:1673–1681

    Article  CAS  Google Scholar 

  16. Klee S, Thinius M, Brockmann KJ, Benter T (2014) Rapid Commun Mass Spectrom 28:1591–1600

    Article  CAS  Google Scholar 

  17. Östman P, Luosujärvi L, Haapala M, Grigoras K, Ketola RA, Kotiaho T, Franssila S, Kostiainen R (2006) Anal Chem 78:3027–3031

    Article  Google Scholar 

  18. Almstetter MF, Appel IJ, Dettmer K, Gruber MA, Oefner PJ (2011) J Chromatogr A 1218:7031–7038

    CAS  Google Scholar 

  19. Benjamini Y, Hochberg Y (1995) J Roy Stat Soc Ser B 57:289–300

    Google Scholar 

  20. R-Development Core-Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria

  21. van den Dool H, Kratz PD (1963) J Chromatogr 11:463–471

    Article  Google Scholar 

  22. Dettmer K (2014) Anal Bioanal Chem 406:4931–4939

    Article  CAS  Google Scholar 

  23. Pacchiarotta T, Derks RJ, Hurtado-Fernandez E, van Bezooijen P, Henneman A, Schiewek R, Fernandez-Gutierrez A, Carrasco-Pancorbo A, Deelder AM, Mayboroda OA (2013) Bioanalysis 5:1515–1525

    Article  CAS  Google Scholar 

  24. Villas-Bôas SG, Smart KF, Sivakumaran S, Lane GA (2011) Metabolites I:3–20

    Article  Google Scholar 

  25. Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) J Chromatogr B Anal Technol Biomed Life Sci 870:222–232

    Article  CAS  Google Scholar 

  26. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  27. Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J (2008) J Chromatogr B Anal Technol Biomed Life Sci 871:182–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Maria Mycielska and Dr. Sven Lang from the Department of Surgery/University Hospital Regensburg (Regensburg, Germany) for providing the supernatant samples. Funding by DFG (KFO 262, DE 835/2-1) is gratefully acknowledged. We thank Dr. Thomas Arthen-Engeland from Bruker Daltonics (Bremen, Germany) for fruitful discussions and support throughout the study and the provision of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Dettmer.

Electronic supplementary material

Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

ESM 1

(PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wachsmuth, C.J., Hahn, T.A., Oefner, P.J. et al. Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Anal Bioanal Chem 407, 6669–6680 (2015). https://doi.org/10.1007/s00216-015-8824-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8824-x

Keywords

Navigation