Skip to main content
Log in

Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optimised extraction protocol for the analysis of Saccharomyces cerevisiae aqueous and organic metabolites by nuclear magnetic resonance spectroscopy that allows the identification and quantification of up to 50 different compounds is presented. The method was compared with other metabolic profiling protocols for S. cerevisiae, where generally different analytical techniques are applied for metabolite quantification. In addition, the analysis of intact S. cerevisiae cells by HRMAS was implemented for the first time as a complementary method. The optimised protocols were applied to study the metabolic effect of glucose and galactose on S. cerevisiae growth. Furthermore, the metabolic reaction of S. cerevisiae to osmotic stress has been studied.

Graphical description of the metabolic profiling study carried out on S. cerevisiae

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Sci 277:1259–1260

    Article  CAS  Google Scholar 

  2. Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31

    Article  CAS  Google Scholar 

  3. de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    Article  Google Scholar 

  4. J. Vestriselvi, R. Saravanamatha, R. Dhivaharan, and D.K. Maheshwari. Biotechnological potential and industrial application of yeast. Industrial Exploitation of Microorganisms:2010–2448 (2009)

  5. Schullerand D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304

    Article  Google Scholar 

  6. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 108:504–509

    Article  CAS  Google Scholar 

  7. Lindon JC, Nicholson JK, Holmes E (2007) Handbook of metabonomics. ELSEVIER, Oxford

    Google Scholar 

  8. Lourenco AB, Roque FC, Teixeira MC, Ascenso JR, Sa-Correia I (2013) Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PLoS One 8:e55439

    Article  CAS  Google Scholar 

  9. Li H, Ma ML, Luo S, Zhang RM, Han P, Hu W (2012) Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int J Biochem Cell Biol 44:1087–1096

    Article  CAS  Google Scholar 

  10. Maraschin M, Dias PF, Pedrotti EL, Nunes H, Morais HN, Viana AM, Wood KV (2009) Metabolomic analysis of Ocotea odorifera cell cultures: a model protocol for acquiring metabolite data. Methods Mol Biol 547:347–358

    Article  CAS  Google Scholar 

  11. S. Kim, D.Y. Lee, G. Wohlgemuth, H.S. Park, O. Fiehn, and K.H. Kim (2013)Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem 85:2169-2176

    Google Scholar 

  12. Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) Metabolomic characterization of ovarian epithelial carcinomas by HRMAS-NMR spectroscopy. J Oncol 2011:174019

    Article  CAS  Google Scholar 

  13. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF (2010) Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 9:319–332

    Article  CAS  Google Scholar 

  14. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  Google Scholar 

  15. Dettmer K, Nurnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399:1127–1139

    Article  CAS  Google Scholar 

  16. Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    Article  CAS  Google Scholar 

  17. Aranibar N, Borys M, Mackin NA, Ly V, Abu-Absi N, Abu-Absi S, Niemitz M, Schilling B, Li ZJ, Brock B, Russell RJ II, Tymiak A, Reily MD (2011) NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR 49:195–206

    Article  CAS  Google Scholar 

  18. Shi C, Wu CQ, Cao AM, Sheng HZ, Yan XZ, Liao MY (2007) NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats. Toxicol Lett 173:161–167

    Article  CAS  Google Scholar 

  19. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389

    Article  CAS  Google Scholar 

  20. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1355

    Article  CAS  Google Scholar 

  21. Wishart DS, Knox C, Guo AC (2009) HMDB: a knowledgebase for the human metabolome. Nucl Ac Res 37:D603–D610

    Article  CAS  Google Scholar 

  22. Peti W, Griesinger C, Bermel W (2000) Adiabatic TOCSY for C, C and H,H J-transfer. J Biomol NMR 18:199–205

    Article  CAS  Google Scholar 

  23. J.E. Jackson. A User's Guide to Principal Components, New York, 1991

  24. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chem Int Lab Sys 2:37–52

    Article  CAS  Google Scholar 

  25. Jung J, Kim T, Ng C, Oh M (2012) Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling. J Appl Microbiol 113:1468–1478

    Article  CAS  Google Scholar 

  26. Bundy JG, Papp B, Harmston R, Browne RA, Clayson EM, Burton N, Reece RJ, Oliver SG, Brindle KM (2007) Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Res 17:510–519

    Article  CAS  Google Scholar 

  27. Kang WY, Kim SH, Chae YK (2012) Stress adaptation of Saccharomyces cerevisiae as monitored via metabolites using two-dimensional NMR spectroscopy. FEMS Yeast Res 12:608–616

    Article  CAS  Google Scholar 

  28. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, Van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Article  CAS  Google Scholar 

  29. Teng Q, Wenlin H, Collette TW, Ekman DR, Tan C (2009) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5:199–208

    Article  CAS  Google Scholar 

  30. Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CR, Griffiths J, Jones N, Waterfield MD, Timms JF (2006) A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics 6:2772–2796

    Article  CAS  Google Scholar 

  31. Fendtand SM, Sauer U (2010) Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4:12

    Article  Google Scholar 

  32. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Google Scholar 

  33. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  34. Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    Article  CAS  Google Scholar 

  35. Costenoble R, Valadi H, Gustafsson L, Niklasson C, Franzen CJ (2000) Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16:1483–1495

    Article  CAS  Google Scholar 

  36. Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  CAS  Google Scholar 

  37. Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    Article  CAS  Google Scholar 

  38. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis Annu Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  39. Nunez LR, Jesch SA, Gaspar ML, Almaguer C, Villa-Garcia M, Ruiz-Noriega M, Patton-Vogt J, Henry SA (2008) Cell wall integrity MAPK pathway is essential for lipid homeostasis. J Biol Chem 283:34204–34217

    Article  CAS  Google Scholar 

  40. Holcikand M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  Google Scholar 

  41. Melamed D, Pnueli L, Arava Y (2008) Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 14:1337–1351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the MINECO (BFU2011-23418 and SAF2011-28350), GV (PROMETEO/2012/061 and ACOMP2013/104) and the Centro de Investigación Príncipe Felipe. M.M. Molina-Navarro has been supported by a Juan de la Cierva Contract (MEC).

The authors wish to thank Dr. Emilia Matallana for critical comments on the manuscript, Dr. Proft for technical advice and A. Llopis and E. Barber for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana Rodríguez-Navarro or Antonio Pineda-Lucena.

Additional information

Martina Palomino-Schätzlein and Maria Micaela Molina-Navarro contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomino-Schätzlein, M., Molina-Navarro, M.M., Tormos-Pérez, M. et al. Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy. Anal Bioanal Chem 405, 8431–8441 (2013). https://doi.org/10.1007/s00216-013-7271-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7271-9

Keywords

Navigation