Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 5, pp 1577–1591 | Cite as

Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy

  • Mingjie Tang
  • Gerald D. McEwen
  • Yangzhe Wu
  • Charles D. Miller
  • Anhong Zhou
Original Paper

Abstract

The molecular composition of mycobacteria and Gram-negative bacteria cell walls is structurally different. In this work, Raman microspectroscopy was applied to discriminate mycobacteria and Gram-negative bacteria by assessing specific characteristic spectral features. Analysis of Raman spectra indicated that mycobacteria and Gram-negative bacteria exhibit different spectral patterns under our experimental conditions due to their different biochemical components. Fourier transform infrared (FTIR) spectroscopy, as a supplementary vibrational spectroscopy, was also applied to analyze the biochemical composition of the representative bacterial strains. As for co-cultured bacterial mixtures, the distribution of individual cell types was obtained by quantitative analysis of Raman and FTIR spectral images and the spectral contribution from each cell type was distinguished by direct classical least squares analysis. Coupled atomic force microscopy (AFM) and Raman microspectroscopy realized simultaneous measurements of topography and spectral images for the same sampled surface. This work demonstrated the feasibility of utilizing a combined Raman microspectroscopy, FTIR, and AFM techniques to effectively characterize spectroscopic fingerprints from bacterial Gram types and mixtures.

Figure

AFM deflection images, Raman spectra, SEM images, and FTIR of Mycobacterium sp. KMS

Keywords

Mycobacteria Gram-negative bacteria Raman microspectroscopy Fourier transform infrared (FTIR) spectroscopy Atomic force microscopy (AFM) 

Notes

Acknowledgments

This work is partially supported by Huntsman Environmental Research Center and Utah Water Research Laboratory, Logan, UT, USA. We also thank Mr. Juan Ciorciari from Thermo Fisher Scientific for helping in the FTIR measurement of bacterial cells. We also thank Dr. Fen-Ann Shen from the Center for Surface Analysis and Applications, USU for the SEM imaging.

References

  1. 1.
    Hirsch CS, Johnson JL, Ellner JJ (1999) Pulmonary tuberculosis. Curr Opin Pulm Med 5(3):143–150CrossRefGoogle Scholar
  2. 2.
    Kochi A (1991) The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72(1):1–6CrossRefGoogle Scholar
  3. 3.
    Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ, Winthrop K (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Resp Crit Care 175(4):367–416CrossRefGoogle Scholar
  4. 4.
    Buijtels PCAM, Willemse-Erix HFM, Petit PLC, Endtz HP, Puppels GJ, Verbrugh HA, van Belkum A, van Soolingen D, Maquelin K (2008) Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol 46(3):961–965CrossRefGoogle Scholar
  5. 5.
    Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12(3):215–223CrossRefGoogle Scholar
  6. 6.
    Rosenbaum JT, Mcdevitt HO, Guss RB, Egbert PR (1980) Endotoxin-induced uveitis in rats as a model for human disease. Nature 286(5773):611–613CrossRefGoogle Scholar
  7. 7.
    Carey PR (1999) Raman spectroscopy, the sleeping giant in structural biology, awakes. J Biol Chem 274(38):26625–26628CrossRefGoogle Scholar
  8. 8.
    Baena JR, Lendl B (2004) Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8(5):534–539. doi: 10.1016/j.cbpa.2004.08.014 CrossRefGoogle Scholar
  9. 9.
    Rosch P, Schmitt M, Kiefer W, Popp J (2003) The identification of microorganisms by micro-Raman spectroscopy. J Mol Struct 661:363–369. doi: 10.1016/j.molstruc.2003.06.004 CrossRefGoogle Scholar
  10. 10.
    Rosch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, Motzkus HW, Lankers M, Hofer S, Thiele H, Popp J (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol 71(3):1626–1637. doi: 10.1128/AEM.71.3.1626-1637.2005 CrossRefGoogle Scholar
  11. 11.
    De Gelder J, De Gussem K, Vandenabeele P, Vancanneyt M, De Vos P, Moens L (2007) Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules—fatty acids. Anal Chim Acta 603(2):167–175. doi: 10.1016/j.aca.2007.09.049 CrossRefGoogle Scholar
  12. 12.
    Petrov GI, Arora R, Yakovlev VV, Wang X, Sokolov AV, Scully MO (2007) Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. Proc Natl Acad Sci U S A 104(19):7776–7779. doi: 10.1073/pnas.0702107104 CrossRefGoogle Scholar
  13. 13.
    Neugebauer U, Schmid U, Baumann K, Holzgrabe U, Ziebuhr W, Kozitskaya S, Kiefer W, Schmitt M, Popp J (2006) Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy. Biopolymers 82(4):306–311. doi: 10.1002/bip.20447 CrossRefGoogle Scholar
  14. 14.
    Harz M, Rosch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J (2005) Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 130(11):1543–1550. doi: 10.1039/b507715j CrossRefGoogle Scholar
  15. 15.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem 8(1):124–137. doi: 10.1002/cphc.200600507 CrossRefGoogle Scholar
  16. 16.
    Lu X, Weakley AT, Aston DE, Rasco BA, Wang S, Konkel ME (2012) Examination of nanoparticle inactivation of Campylobacter jejuni biofilms using infrared and Raman spectroscopies. J Appl Microbiol 113(4):952–963. doi: 10.1111/j.1365-2672.2012.05373.x CrossRefGoogle Scholar
  17. 17.
    Suo ZY, Yang XH, Avci R, Kellerman L, Pascual DW, Fries M, Steele A (2007) HEPES-stabilized encapsulation of Salmonella typhimurium. Langmuir 23(3):1365–1374. doi: 10.1021/La0621721 CrossRefGoogle Scholar
  18. 18.
    Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351(6321):81–82. doi: 10.1038/351081a0 CrossRefGoogle Scholar
  19. 19.
    Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, Endtz HP, Bruining HA, Naumann D, Puppels GJ (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41(1):324–329. doi: 10.1128/Jcm.41.1.324-329.2003 CrossRefGoogle Scholar
  20. 20.
    Holman HYN, Nieman K, Sorensen DL, Miller CD, Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36(6):1276–1280. doi: 10.1021/Es0157200 CrossRefGoogle Scholar
  21. 21.
    Yadav LDS (2005) Organic spectroscopy. Raman spectroscopy. Kluwer Academic, New DelhiGoogle Scholar
  22. 22.
    Rodriguez A, Autio WR, McLandsborough LA (2008) Effects of contact time, pressure, percent relative humidity (%RH), and material type on Listeria biofilm adhesive strength at a cellular level using atomic force microscopy (AFM). Food Biophysics 3(3):305–311. doi: 10.1007/s11483-008-9085-4 CrossRefGoogle Scholar
  23. 23.
    Yongsunthon R, Lower SK (2006) Force measurements between a bacterium and another surface in situ. Adv Appl Microbiol 58:97–124. doi: 10.1016/S0065-2164(06)58003-1 Google Scholar
  24. 24.
    Beckmann MA, Venkataraman S, Doktycz MJ, Nataro JP, Sullivan CJ, Morrell-Falvey JL, Allison DP (2006) Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy 106(8–9):695–702. doi: 10.1016/j.ultramic.2006.02.006 CrossRefGoogle Scholar
  25. 25.
    Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microb Ecol 48(2):230–238. doi: 10.1007/s00248-003-1044-5 CrossRefGoogle Scholar
  26. 26.
    Anonymous (1982) Certified host vector systems. Recomb DNA Tech Bull 5(4):206–209Google Scholar
  27. 27.
    Nelson KE (2002) The complete genome sequence of Pseudomonas putida KT2440 is finally available—foreword. Environ Microbiol 4(12):777–778. doi: 10.1046/j.1462-2920.2002.00367.x CrossRefGoogle Scholar
  28. 28.
    Bagdasarian M, Lurz R, Ruckert B, Franklin FCH, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host–vector system for gene cloning in Pseudomonas. Gene 16(1–3):237–247. doi: 10.1016/0378-1119(81)90080-9 CrossRefGoogle Scholar
  29. 29.
    Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808. doi: 10.1046/j.1462-2920.2002.00366.x CrossRefGoogle Scholar
  30. 30.
    Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology 48(1):49–64CrossRefGoogle Scholar
  31. 31.
    Tian Y (2008) Behaviour of bacterial extracellular polymeric substances from activated sludge: a review. Int J Environ Pollut 32(1):78–89CrossRefGoogle Scholar
  32. 32.
    Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198. doi: 10.1016/j.envint.2005.08.010 CrossRefGoogle Scholar
  33. 33.
    Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 3(12):774–784CrossRefGoogle Scholar
  34. 34.
    McEwen GD, Wu YZ, Zhou AH (2010) Probing nanostructures of bacterial extracellular polymeric substances versus culture time by Raman microspectroscopy and atomic force microscopy. Biopolymers 93(2):171–177. doi: 10.1002/Bip.21315 CrossRefGoogle Scholar
  35. 35.
    Beveridge TJ (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol 72:229–317CrossRefGoogle Scholar
  36. 36.
    Perry JJ, Staley JT, Lory S (2002) Microbial life. Sinauer Associates Incorporated, SunderlandGoogle Scholar
  37. 37.
    Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. 38.
    Wu YZ, Zhou AH (2010) Fluctuations in adhesion behavior of dividing/budding Mycobacterium sp. strains JLS, KMS, MCS: an AFM evaluation. Micron 41(7):814–820. doi: 10.1016/j.micron.2010.05.008 CrossRefGoogle Scholar
  39. 39.
    Zhang L, Henson MJ, Sekulic SS (2005) Multivariate data analysis for Raman imaging of a model pharmaceutical tablet. Anal Chim Acta 545(2):262–278. doi: 10.1016/j.aca.2005.04.080 CrossRefGoogle Scholar
  40. 40.
    Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51(3):255–271CrossRefGoogle Scholar
  41. 41.
    Thi NAN, Carolin K, Dieter N (2000) FT-IR microspectrometry: a new tool for characterizing micro-organisms. Proc SPIE 36:36–44Google Scholar
  42. 42.
    Tripathi A, Jabbour RE, Treado PJ, Neiss JH, Nelson MP, Jensen JL, Snyder AP (2008) Waterborne pathogen detection using Raman spectroscopy. Appl Spectrosc 62(1):1–9. doi: 10.1366/000370208783412546 CrossRefGoogle Scholar
  43. 43.
    Berger AJ, Zhu QY (2003) Identification of oral bacteria by Raman microspectroscopy. J Mod Opt 50(15–17):2375–2380. doi: 10.1080/0950034032000121055 Google Scholar
  44. 44.
    le Roux K, Prinsloo LC, Hussein AA, Lall N (2012) A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine. Spectrochim Acta A 95:547–554. doi: 10.1016/j.saa.2012.04.048 CrossRefGoogle Scholar
  45. 45.
    Parekh SH, Lee YJ, Aamer KA, Cicerone MT (2010) Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys J 99(8):2695–2704. doi: 10.1016/j.bpj.2010.08.009 CrossRefGoogle Scholar
  46. 46.
    De Gelder J, De Gussem K, Vandenabeele P, Vancanneyt M, De Vos P, Moens L (2007) Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules—fatty acids. Anal Chim Acta 603(2):167–175. doi: 10.1016/j.aca.2007.09.049 CrossRefGoogle Scholar
  47. 47.
    Chan JW, Motton D, Rutledge JC, Keim NL, Huser T (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Anal Chem 77(18):5870–5876. doi: 10.1021/Ac050692f CrossRefGoogle Scholar
  48. 48.
    Tortora GJ, Funke BR, Case CL (1998) Microbiology an introduction. Benjamin Cummings, Menlo ParkGoogle Scholar
  49. 49.
    Goodwin JR, Hafner LM, Fredericks PM (2006) Raman spectroscopic study of the heterogeneity of microcolonies of a pigmented bacterium. J Raman Spectrosc 37(9):932–936. doi: 10.1002/Jrs.1523 CrossRefGoogle Scholar
  50. 50.
    Pradhan N, Pradhan SK, Nayak BB, Mukherjee PS, Sukla LB, Mishra BK (2008) Micro-Raman analysis and AFM imaging of Acidithiobacillus ferrooxidans biofilm grown on uranium ore. Res Microbiol 159(7–8):557–561. doi: 10.1016/j.resmic.2008.06.006 CrossRefGoogle Scholar
  51. 51.
    Naumann D (2006) Encyclopedia of analytical chemistry infrared spectroscopy in microbiology. Wiley, ChichesterGoogle Scholar
  52. 52.
    Mauer LJ, Reuhs BL (2008) Mid-infrared sensors for the rapid analysis of select microbial food borne pathogens. In: Voeller JG (ed) Wiley handbook of science and technology for homeland security. Wiley, ChichesterGoogle Scholar
  53. 53.
    Fountain AW, Pearman WF (2006) Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Appl Spectrosc 60(4):356–365CrossRefGoogle Scholar
  54. 54.
    Naumann D (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev 36(2–3):239–298CrossRefGoogle Scholar
  55. 55.
    Oust A, Moretro T, Naterstad K, Sockalingum GD, Adt I, Manfait M, Kohler A (2006) Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Appl Environ Microbiol 72(1):228–232CrossRefGoogle Scholar
  56. 56.
    Rasco BA, Lu XN, Al-Qadiri HM, Lin MS (2011) Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology 4(6):919–935. doi: 10.1007/s11947-011-0516-8 CrossRefGoogle Scholar
  57. 57.
    Goodacre R, Jarvis RM, Brooker A (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76(17):5198–5202. doi: 10.1021/ac049663f CrossRefGoogle Scholar
  58. 58.
    Wu YZ, Zhou AH (2009) In situ, real-time tracking of cell wall topography and nanomechanics of antimycobacterial drugs treated Mycobacterium JLS using atomic force microscopy. Chem Commun 45:7021–7023. doi: 10.1039/B914605a CrossRefGoogle Scholar
  59. 59.
    Farnia P, Mohammad RM, Merza MA, Tabarsi P, Zhavnerko GK, Ibrahim TA, Kuan HO, Ghanavei J, Ranjbar R, Poleschuyk NN, Titov LP, Owlia P, Kazampour M, Setareh M, Sheikolslami M, Migliori GB, Velayati AA (2010) Growth and cell-division in extensive (XDR) and extremely drug resistant (XXDR) tuberculosis strains: transmission and atomic force observation. Int J Clin Exp Med 3(4):308–314Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mingjie Tang
    • 1
  • Gerald D. McEwen
    • 1
  • Yangzhe Wu
    • 1
  • Charles D. Miller
    • 1
  • Anhong Zhou
    • 1
  1. 1.Department of Biological EngineeringUtah State UniversityLoganUSA

Personalised recommendations