Skip to main content
Log in

A resonance light scattering sensor based on methylene blue–sodium dodecyl benzene sulfonate for ultrasensitive detection of guanine base associated mutations

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A resonance light scattering (RLS) sensor for guanine base associated mutations has been developed on the basis of the high selectivity of methylene blue (MB) for guanine bases in the presence of sodium dodecyl benzene sulfonate (SDBS). MB, when bound to SDBS, underwent a dramatic enhancement of its RLS intensity. However, the addition of double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) caused the strong RLS intensity of MB–SDBS to decrease, and the RLS intensity of MB–SDBS–ssDNA was much lower than that of MB–SDBS–dsDNA. Consequently, it can be concluded that the binding abilities of MB–SDBS with ssDNA and dsDNA were different. Besides, the experimental results showed that MB–SDBS could bind specifically to oligonucleotides rich in guanine bases. Short DNA targets with sequences related to β-thalassaemia, thrombophilia and psoriasis, all of which are guanine base relevant mutations, were synthesized. It was found that MB–SDBS could recognize the single-base mismatches in the mutational DNA, followed by different RLS signal changes between MB–SDBS–normal DNA systems and MB–SDBS–mutational DNA systems. The ultrasensitive sensor allows simple, rapid, sensitive and selective detection of guanine base associated mutations, indicating its potential application in the medical field.

An RLS sensor for the detection of guanine base associated mutations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pividori MI, Merkoçi A, Alegret S (2000) Biosens Bioelectron 15:291–303

    Article  CAS  Google Scholar 

  2. Mikkelsen SR (1996) Electroanalysis 8:15–19

    Article  CAS  Google Scholar 

  3. Qin WJ, Yue L, Yung LYL (2009) Biosens Bioelectron 25:313–319

    Article  CAS  Google Scholar 

  4. Vercoutere W, Akeson M (2002) Curr Opin Chem Biol 6:816–822

    Article  CAS  Google Scholar 

  5. Schaik RHN, Wildt SN, Iperen NM, Uitterlinden AG, Anker JN, Lindemans J (2000) Clin Chem 46:1834–1836

    Google Scholar 

  6. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Proc Natl Acad Sci USA 86:2766–2770

    Article  CAS  Google Scholar 

  7. Tong D, Stimpfl M, Reinthaller A, Vavra N, Müllauer-Ertl S, Leodolter S, Zeillinger R (1999) Clin Chem 45:976–981

    CAS  Google Scholar 

  8. Parker-Katiraee L, Bousiaki E, Monk D, Moore GE, Nakabayashi K, Scherer SW (2008) Hum Mol Genet 17:3263–3270

    Article  CAS  Google Scholar 

  9. Taylor BJ, Martin KA, Arango E, Agudelo OM, Maestre A, Yanow SK (2011) Malar J 10:244–251

    Article  CAS  Google Scholar 

  10. Li HK, Huang JH, Lv JH, An HJ, Zhang XD, Zhang ZZ, Fan CH, Hu J (2005) Angew Chem Int Ed 44:5100–5103

    Article  CAS  Google Scholar 

  11. Dufva M, Petersen J, Poulsen L (2009) Anal Bioanal Chem 395:669–677

    Article  CAS  Google Scholar 

  12. Erickson D, Liu XZ, Venditti R, Li DQ, Krull UJ (2005) Anal Chem 77:4000–4007

    Article  CAS  Google Scholar 

  13. He Y, Zhang H, Chai Y, Cui H (2011) Anal Bioanal Chem 399:3451–3458

    Article  CAS  Google Scholar 

  14. Wipawakarn P, Ju HX, Wong DKY (2012) Anal Bioanal Chem 402:2817–2826

    Article  CAS  Google Scholar 

  15. Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Anal Chem 75:2181–2187

    Article  CAS  Google Scholar 

  16. Feng KJ, Zhao JJ, Wu ZS, Jiang JH, Shen GL, Yu RQ (2011) Biosens Bioelectron 26:3187–3191

    Article  CAS  Google Scholar 

  17. Zhang SB, Wu ZS, Shen GL, Yu RQ (2009) Biosens Bioelectron 24:3201–3207

    Article  CAS  Google Scholar 

  18. Tsouti V, Boutopoulos C, Zergioti I, Chatzandroulis S (2011) Biosens Bioelectron 27:1–11

    Article  CAS  Google Scholar 

  19. Anglister J, Steinberg IZ (1983) J Chem Phys 78:5358–5368

    Article  CAS  Google Scholar 

  20. Pasternack RF, Bustamante C, Collings PJ, Giannetto LA, Gibbs EJ (1993) J Am Chem Soc 115:5393–5399

    Article  CAS  Google Scholar 

  21. Pasternack RF, Collings PJ (1995) Science 269:935–939

    Article  CAS  Google Scholar 

  22. Huang CZ, Li KA, Tong SY (1996) Anal Chem 68:2259–2263

    Article  CAS  Google Scholar 

  23. Huang CZ, Li KA, Tong SY (1997) Anal Chem 69:514–520

    Article  CAS  Google Scholar 

  24. Collings PJ, Gibbs EJ, Starr TE, Vafek O, Yee C, Pomerance LA, Pasternack RF (1999) J Phys Chem B 103:8474–8481

    Article  CAS  Google Scholar 

  25. Li ZP, Li KA, Tong SY (2000) Talanta 51:63–70

    Article  CAS  Google Scholar 

  26. Ling J, Huang CZ, Li YF, Zhang L, Chen LQ, Zhen SJ (2009) Trends Anal Chem 28:447–453

    Article  CAS  Google Scholar 

  27. Li Y, Jing C, Zhang L, Long YT (2012) Chem Soc Rev 41:632–642

    Article  CAS  Google Scholar 

  28. Chen ZG, Ding WF, Ren FL, Liu JB, Liang YZ (2005) Anal Chim Acta 550:204–209

    Article  CAS  Google Scholar 

  29. Chen ZG, Zhang GM, Chen X, Gao WH (2012) Anal Bioanal Chem 402:2163–2171

    Article  CAS  Google Scholar 

  30. Chen ZG, Song TH, Wang SB, Chen X, Chen JH, Li YQ (2010) Biosens Bioelectron 25:1947–1952

    Article  CAS  Google Scholar 

  31. Tani A, Thomson AJ, Butt JN (2001) Analyst 126:1756–1759

    Article  CAS  Google Scholar 

  32. Yang WR, Ozsoz M, Hibbert DB, Gooding JJ (2002) Electroanalysis 14:1299–1302

    Article  CAS  Google Scholar 

  33. Weatherall DJ, Clegg JB (1981) The thalassemia syndromes. Blackwell, Oxford

    Google Scholar 

  34. Khan S, Dickerman JD (2006) Thromb J 4:15–31

    Article  Google Scholar 

  35. Bertina RM (1997) Clin Chem 43:1678–1683

    CAS  Google Scholar 

  36. Kang KA, Ren YJ, Sharma VR, Peiper SC (2009) Biosens Bioelectron 24:2785–2790

    Article  CAS  Google Scholar 

  37. Berth-Jones J (2009) Medicine 37:235–241

    Article  Google Scholar 

  38. Edwards RL, Creese AJ, Baumert M, Griffiths P, Bunch J, Cooper HJ (2011) Anal Chem 83:2265–2270

    Article  CAS  Google Scholar 

  39. Ortiz M, Fragoso A, Ortiz PJ, O’Sullivan CK (2011) J Photochem Photobiol A 218:26–32

    Article  CAS  Google Scholar 

  40. Farjami E, Clima L, Gothelf KV, Ferapontova EE (2010) Analyst 135:1443–1448

    Article  CAS  Google Scholar 

  41. Qi L, Han ZQ, Chen Y (2006) J Chromatogr A 1110:235–239

    Article  CAS  Google Scholar 

  42. Vidal E, Palomeque ME, Lista AG, Fernández Band BS (2003) Anal Bioanal Chem 376:38–41

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks for the financial support from the Guangdong Science and Technology Department (no. 2006B35630009) and the Science Foundation of Shantou University (no. YR09009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanguang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.50 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Qian, S., Chen, J. et al. A resonance light scattering sensor based on methylene blue–sodium dodecyl benzene sulfonate for ultrasensitive detection of guanine base associated mutations. Anal Bioanal Chem 404, 1673–1679 (2012). https://doi.org/10.1007/s00216-012-6289-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6289-8

Keywords

Navigation