Skip to main content
Log in

A resonance light-scattering off–on system for studies of the selective interaction between adriamycin and DNA

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

On the basis of the resonance light scattering (RLS) of Ag nanoparticles (AgNPs), an RLS off–on system was developed for studies of the selective interaction between adriamycin (ADM) and DNA. In this strategy, addition of ADM could induce a proportional decrease in the RLS intensity of AgNPs; this could be used to detect trace amounts of ADM with a detection limit of 12.75 ng mL−1 in the range 0.021–10.0 μg mL−1. Subsequently, by investigating the ability of different DNA sequences to restore the RLS intensity of the analytical systems, we found that ADM was selective to dsDNA and had an obvious preference for sequences that were rich in guanine and cytosine bases. In order to validate the results of the RLS assay, fluorescence quenching was used, and binding constants and binding numbers of each system were calculated. Compared with other methods, this RLS off–on strategy was more sensitive, fast, and reliable. It has also supplied a novel method for studying the sequence selectivity of DNA-targeted anticancer drugs and is a novel application of the RLS technique in analytical chemistry.

A resonance light scattering off-on system for the studies of selective interaction between adriamycin and DNA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thurston DE (2007) Brit J Cancer 97:1713

    Article  Google Scholar 

  2. Hotze G, Kariuki BM, Hannon MJ (2006) Angew Chem 118:4957–4960

    Article  Google Scholar 

  3. Gossens C, Tavernelli I, Rothlisberger U (2008) J Am Chem Soc 130:10921–10928

    Article  CAS  Google Scholar 

  4. Siu FM, Che CM (2008) J Am Chem Soc 130:17928–17937

    Article  CAS  Google Scholar 

  5. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Science 21:1031–1035

    Article  Google Scholar 

  6. Palchaudhuri R, Hergenrother PJ (2007) Curr Opin Biotech 18:497–503

    Article  CAS  Google Scholar 

  7. Xiao LD, Hu ZY, Zhang W, Wu CX, Yu H, Wang P (2010) Biosens Bioelectron 26:1493–1499

    Article  CAS  Google Scholar 

  8. Ricardo PT (2003) Curr Med Chem 13:1859–1876

    Google Scholar 

  9. Yuan JP, Guo WW, Yang XR, Wang EK (2009) Anal Chem 81:362–368

    Article  CAS  Google Scholar 

  10. Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2005) J Pharm Biomed Anal 37:205–217

    Article  CAS  Google Scholar 

  11. Saad JS, Natile GL, Marzilli G (2009) J Am Chem Soc 131:12314–12324

    Article  CAS  Google Scholar 

  12. Takahara PM, Frederick CA, Lippard SJ (1996) J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  13. Deubel DV (2006) J Am Chem Soc 128:1654–1663

    Article  CAS  Google Scholar 

  14. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ (1993) J Am Chem Soc 115:5393–5399

    Article  CAS  Google Scholar 

  15. Huang CZ, Li KA, Tong SY (1996) Anal Chem 68:2259–2263

    Article  CAS  Google Scholar 

  16. Ling J, Huang CZ, Li YF, Zhang L, Chen LQ, Zhen SJ (2009) Trends Anal Chem 28:447–453

    Article  CAS  Google Scholar 

  17. Jiang ZL, Huang YJ, Liang AH, Pan HC, Liu QY (2009) Biosens Bioelectron 24:1674–1678

    Article  CAS  Google Scholar 

  18. Huang CZ, Li KA, Tong SY (2009) Anal Chem 81:1707–1714

    Article  Google Scholar 

  19. Brar SK, Verma M (2011) Trends Anal Chem 30:4–17

    Article  CAS  Google Scholar 

  20. Chen ZG, Liu GL, Chen MZ, Xu BJ, Peng YR, Chen MH, Wu MY (2009) Talanta 77:1365–1369

    Article  CAS  Google Scholar 

  21. Chen ZG, Peng YR, Chen MH, Chen X, Zhang GM (2010) Analyst 135:2653–2660

    Article  CAS  Google Scholar 

  22. Chen ZG, Song TH, Wang SB, Chen X, Chen JH, Li YQ (2010) Biosens Bioelectron 25:1947–1952

    Article  CAS  Google Scholar 

  23. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:478–490

    Article  Google Scholar 

  24. Liu SH, Zhang ZH, Han MY (2005) Anal Chem 77:2595–2600

    Article  CAS  Google Scholar 

  25. Wu LP, Li YF, Huang CZ, Zhang Q (2006) Anal Chem 78:5570–5577

    Article  CAS  Google Scholar 

  26. Ling J, Li YF, Huang CZ (2008) Anal Biochem 383:168–173

    Article  CAS  Google Scholar 

  27. Sultana R, Domenico FD, Tseng M, Cai J, Noel T, Chelvarajan RL, Pierce WD, Cini C, Bondada S, Clair DS, Butterfield DA (2010) J Proteome Res 9:6232–6241

    Article  CAS  Google Scholar 

  28. Lee PC, Meisel D (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  29. Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Anal Chem 80:2805–2810

    Article  CAS  Google Scholar 

  30. Strekal N, German A, Gachko G, Maskevich A, Maskevich S (2001) J Mol Struct 563–564:183–191

    Google Scholar 

  31. Zhang SZ, Zhao FL, Li KA, Tong SY (2001) Anal Chim Acta 431:133–139

    Article  CAS  Google Scholar 

  32. Ling J, Sang Y, Huang CZ (2008) J Pharm Biomed 47:860–864

    Article  CAS  Google Scholar 

  33. Cirilli M, Bachechi F, Ughetto G, Colonna FP, Capobianco ML (1993) J Mol Biol 230:878–889

    Article  CAS  Google Scholar 

  34. Zook JM, Stephen EL, Cleveland D, Geronimo CLA, MacCuspie RI (2011) Anal Bioanal Chem 401:1993–2002

    Article  CAS  Google Scholar 

  35. Wang GL, Dong YM, Zhu XY, Zhang WJ, Wang C, Jiao HJ (2011) Analyst 136:5256–5260

    Article  CAS  Google Scholar 

  36. Perveen F, Qureshi R, Ansari FL, Kalsoom S, Ahmed S (2011) J Mol Struct 1004:67–73

    Article  CAS  Google Scholar 

  37. Cheng GF, Zhao J, Tu YH, He PG, Fang YZ (2005) Chinese J Chem 23:576–580

    Article  CAS  Google Scholar 

  38. Abu-Salah KM, Alrokyan SA, Khan MN, Ansari AA (2010) Sensors 10:963–993

    Article  CAS  Google Scholar 

  39. Yuan JP, Guo WW, Wang EK (2011) Anal Chim Acta 2:338–342

    Article  Google Scholar 

  40. Shen Q, Wang XM, Fu DG (2008) Appl Surf Sci 255:577–580

    Article  CAS  Google Scholar 

  41. Wolf LK, Gao Y, Georgiadis RM (2007) J Am Chem Soc 129:10503–10511

    Article  CAS  Google Scholar 

  42. Xu LW, Jian C (2003) Anal Chem 75:1458–1462

    Article  Google Scholar 

  43. Omoike A, Brandt B (2011) Spectrochim Acta A 79:185–190

    Article  CAS  Google Scholar 

  44. Lange JHM, Schipper NW, Schuurhuis GJ, Kate TK, Heijiningen THM, Pinedo HM, Lankelma J, Baak JPA (1992) Cytom Part A 13:571–576

    Article  Google Scholar 

Download references

Acknowledgments

All the authors are grateful for financial support from the Guangdong Science and Technology Department (no. 2006B35630009) and the Science Foundation of Shantou University (no. YR09009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanguang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zhang, G., Chen, X. et al. A resonance light-scattering off–on system for studies of the selective interaction between adriamycin and DNA. Anal Bioanal Chem 402, 2163–2171 (2012). https://doi.org/10.1007/s00216-011-5672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5672-1

Keywords

Navigation