Skip to main content
Log in

An ultrasensitive guanine wire-based resonance light scattering method using G-quadruplex self-assembly for determination of microRNA-122

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An enzyme-free resonance light scattering (RLS) method is described for the determination of microRNA-122. A guanine nanowire (G-wire) is used that consists of a predesigned DNA1 and a G-quadruplex sequence DNA2. These hybridize with microRNA-122 and partially hybridize with DNA2. After formation of stable double strands with DNA1, DNA2 is released. On addition of K+ and Mg2+ ions, the G-quadruplex sequences undergo self-assembly to form long filamentous G-wires. This increases the intensity of RLS. A 6.1 pM detection limit was obtained, and the linear response covers the 50 pM to 300 nM microRNA concentration range. The method was successfully applied to the quantitation of microRNA-122 in hepatocellular carcinoma cell lysates. Conceivably, this assay can be extended to other RLS methods for biomarker detection by simply changing the sequence of DNA1.

The G-quadruplex sequences of DNA2 were locked with DNA1. The G-quadruplex fragments of DNA2 were released after the hybridization of microRNA-122 with DNA1. These liberated G-quadruplex sequences were self-assembled into long filamentous guanine nanowires (G-wires) which increased resonance light intensity in the presence of Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marsh TC, Henderson E (1994) G-wires: self-assembly of a Telomeric oligonucleotide, d (GGGGTTGGGG), into large superstructures. Biochemistry 33:10718–10724. https://doi.org/10.1021/bi00201a020

    Article  CAS  PubMed  Google Scholar 

  2. Marsh TC, Vesenka J, Henderson E (1995) A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res 23:696–700. https://doi.org/10.1093/nar/23.4.696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kenir MA (2000) Quadruplex Structures in Nucleic Acids. Biopolymers 56:123–146. https://doi.org/10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO;2-3

    Article  Google Scholar 

  4. Sen D, Gilbert W (1990) A sodium-potassium swich in the formation of four-stranded G4-DNA. Nature 344:410–414. https://doi.org/10.1038/344410a0

    Article  CAS  PubMed  Google Scholar 

  5. Sen D, Gilbert W (1992) Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 31:65–70. https://doi.org/10.1021/bi00116a011

    Article  CAS  PubMed  Google Scholar 

  6. Liu S-P, Weisbrod SH, Tang Z, Marx A, Scheer E, Erbe A (2010) Direct measurement of electrical transport through G-Quadruplex DNA with mechanically controllable break junction electrodes. Angew Chem Int Ed 49:3313–3316. https://doi.org/10.1002/anie.201000022

    Article  CAS  Google Scholar 

  7. Protozanova E, Macgregor RB (1996) Frayed wires: a thermally stable form of DNA with two distinct structural domains. Biochemistry 35:16638–16645. https://doi.org/10.1021/bi960412d

    Article  CAS  PubMed  Google Scholar 

  8. Fahlman RP, Sen D (1998) Cation-regulated self-association of "Synapsable" DNA duplexes. J Mol Biol 280:237–244. https://doi.org/10.1006/jmbi.1998.1875

    Article  CAS  PubMed  Google Scholar 

  9. Hessari NM, Spindler L, Troha T, Lam W-C, Drevenšek-Olenik I, Silva MW (2014) Programmed self-assembly of a Quadruplex DNA nanowire. Chem Eur J 20:3626–3630. https://doi.org/10.1002/chem.201300692

    Article  CAS  PubMed  Google Scholar 

  10. Ilc T, Plavec P, Šket J, Silva MW, Drevenšek-Olenik I, Spindler L (2013) Formation of G-wires: the role of G: C-base pairing and G-quartet stacking. J Phys Chem C 117:23208–23215. https://doi.org/10.1021/jp4019348

    Article  CAS  Google Scholar 

  11. Yatsunyk LA, Piétrement O, Albrecht D, Tran PLT, Renčiuk D, Sugiyama H, Arbona J-M, Aimé J-P, Mergny J-L (2013) Guided assembly of Tetramolecular G-quadruplexes. ACS Nano 7:5701–5710. https://doi.org/10.1021/nn402321g

    Article  CAS  PubMed  Google Scholar 

  12. Qing M, Yuan Y, Cai W, Xie S, Tang Y, Yuan R, Zhang J (2018) An ultrasensitive electrochemical biosensor based on multifunctional hemin/G-quadruplex nanowires simultaneously served as bienzyme and direct electron mediator for detection of lead ion. Sensors Actuators B Chem 263:469–475. https://doi.org/10.1016/j.snb.2018.02.109

    Article  CAS  Google Scholar 

  13. Gao ZF, Huang YL, Ren W, Luo HQ, Li NB (2016) Guanine nanowire based amplification strategy: enzyme-free biosensing of nucleic acids and proteins. Biosens Bioelectron 78:351–357. https://doi.org/10.1016/j.bios.2015.11.070

    Article  CAS  PubMed  Google Scholar 

  14. Ye C, Wang MQ, Luo HQ, Li NB (2017) Label-free Photoelectrochemical “off-on” platform coupled with G-wire-enhanced strategy for highly sensitive MicroRNA sensing in Cancer cells. Anal Chem 89:11697–11702. https://doi.org/10.1021/acs.analchem.7b03150

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Luo J, Wu M, Hu F, Lu Z, Jing H, Chen R, Zhan H (2018) Ultrasensitive and specific imaging of circulating microRNA based on split probe, exponential amplification, and topological guanine nanowires. Sensors Actuators B Chem 269:158–163. https://doi.org/10.1016/j.snb.2018.04.122

    Article  CAS  Google Scholar 

  16. Zhang XF, Li N, Ye C, Liang JY, Li NB, Luo HQ (2017) Sensitive label-free resonance Rayleigh scattering DNA machine-based dual amplification strategy for the active uracil-DNA glycosylase assay. Sensors Actuators B Chem 250:300–306. https://doi.org/10.1016/j.snb.2017.04.178

    Article  CAS  Google Scholar 

  17. Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ (2016) Ultrasensitive label-free resonance Rayleigh scattering Aptasensor for Hg2+ using Hg2+−triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem 88:1385–1390. https://doi.org/10.1021/acs.analchem.5b03972

    Article  CAS  PubMed  Google Scholar 

  18. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 115:5393–5399. https://doi.org/10.1021/ja00066a006

    Article  CAS  Google Scholar 

  19. Liu S, Luo H, Li N, Liu Z, Zheng W (2001) Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73:3907–3914. https://doi.org/10.1021/ac001454h

    Article  CAS  PubMed  Google Scholar 

  20. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581. https://doi.org/10.1126/science.1113329

    Article  CAS  Google Scholar 

  21. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  22. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of MicroRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981. https://doi.org/10.1021/ja910275u

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Feng J, Liu H, Li Q, Tong L, Tang B (2016) Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chem Sci 7:1940–1945. https://doi.org/10.1039/C5SC03909F

    Article  CAS  PubMed  Google Scholar 

  24. Song Y, Yan X, Ostermeyer G, Li S, Qu L, Du D, Li Z, Lin Y (2018) Direct cytosolic MicroRNA detection using single-layer Perfluorinated tungsten Diselenide Nanoplatform. Anal Chem 90:10369–10376. https://doi.org/10.1021/acs.analchem.8b02193

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304. https://doi.org/10.1007/s00604-015-1636-z

    Article  CAS  Google Scholar 

  26. Dong H, Jin S, Ju H, Hao K, Xu LP, Lu H, Zhang X (2012) Trace and label-free MicroRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84:8670–8674. https://doi.org/10.1021/ac301860v

    Article  CAS  PubMed  Google Scholar 

  27. Park J, Yeo JS (2014) Colorimetric detection of microRNA miR-21 based on nanoplasmonic core–satellite assembly. Chem Commun 50:1366–1368. https://doi.org/10.1039/C3CC48154A

    Article  CAS  Google Scholar 

  28. Lv S, Chen F, Chen C, Chen X, Gong H, Cai C (2017) A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta 165:659–663. https://doi.org/10.1016/j.talanta.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  29. Wu D, Shi H, Wang S, He Y, Bao Y, Liu K (2012) Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal Chim Acta 726:57–66. https://doi.org/10.1016/j.aca.2012.03.038

    Article  CAS  PubMed  Google Scholar 

  30. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of Hepatitis C Virus RNA ndance by a Liver-Specific MicroRNA. Science 309:1577–1581. https://doi.org/10.1126/science.1113329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21775132), Scientific Research Foundation of Hunan Provincial Education Department (No. 16A204), and the National Natural Science Foundation of Hunan province (No.2018JJ2388). Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, the project of innovation team of the ministry of education (IRT_17R90), and “1515”academic leader team program of Hunan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqun Cai.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 23037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, R., Zhang, F., Chen, C. et al. An ultrasensitive guanine wire-based resonance light scattering method using G-quadruplex self-assembly for determination of microRNA-122. Microchim Acta 186, 599 (2019). https://doi.org/10.1007/s00604-019-3707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3707-z

Keywords

Navigation