Skip to main content
Log in

Detection of nucleotides in positive-mode electrospray ionization mass spectrometry using multiply-charged cationic ion-pairing reagents

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nucleotides are a class of molecules that play an essential role in biological systems. A new method has been developed in the detection of nucleotides. These molecules can exist as monomers or constituents of oligomers and polymers. As such, they carry from one to several negative charges. In this study, different cationic ion-pairing reagents were used to complex with each of the 28 nucleotide monomers and nucleotide containing compounds. By using this method, this discrete set of anions was able to be detected in the positive-mode electrospray ionization mass spectrometry, as positively charged complexes. Tandem mass spectrometry experiments were also completed on the ion-pairing reagents that performed the best in the single ion monitoring (SIM) ion mode, and the sensitivity was lowered even further for most of the anions. Limits of detection for compounds such as thymidine diphosphate were improved as much as 100 times compared to the positive SIM mode, and 750 times when compared to the negative mode. A few nucleotides did not show a significant increase in sensitivity when analyzed in the positive ion mode, but in general the new method developed herein resulted in a much greater sensitivity than traditional detection in the negative mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boyer R (2004) Concepts in biochemistry, 3dth edn. Wiley, New York, pp 282–348

    Google Scholar 

  2. Garret, RH, Grisham CM (2005) Biochemistry. 3d Ed. Thomson, Brooks/Cole pp. 541-618

  3. Gomez D, Fernandez JA, Astigarraga E, Marcaide A, Azcarate S (2007) Current Topics in Sol State Phys 4:2185–2189

    Article  CAS  Google Scholar 

  4. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Nat Meth 7:461–465

    Article  CAS  Google Scholar 

  5. Wampler FM III, Blades AT, Kebarle P (1993) J Am Soc Mass Spectrom 4:289–95

    Article  CAS  Google Scholar 

  6. Zhao X, Huan C, Huang C (2010) Trends Anal Chem 29:354–367

    Article  CAS  Google Scholar 

  7. Fujii S, Inagaki K, Takatsu A, Yarita T, Chiba K (2009) J Chromatogr A 1216:7488–7492

    Article  CAS  Google Scholar 

  8. Singhal P, Kuhr WG (1997) Anal Chem 69:4828–4832

    Article  CAS  Google Scholar 

  9. Cashion PJ, Notman HJ, Cadger TB, Sathe GM (1977) Anal Biochem 80:654–655

    Article  CAS  Google Scholar 

  10. Huang Z, Petty JT, O'Quinn B, Longmire JL, Brown NC, Jett JH, Keller RA (1996) Nucleic Acids Res 24:4202–4209

    Article  CAS  Google Scholar 

  11. Markovits J, Roques BP, Le Pecq JB (1979) Anal Biochem 94:259–264

    Article  CAS  Google Scholar 

  12. Standard SA, Vaux P, Bray CM (1985) J Chrom 318:433–439

    Article  CAS  Google Scholar 

  13. Childs KF, Ning X, Bolling SB (1996) J Chromatogr B 678:181–186

    Article  CAS  Google Scholar 

  14. Carter AJ, Mueller RE (1990) J Chrom 527:31–39

    Article  CAS  Google Scholar 

  15. Weng QM, Hammargren WM, Slowikowski D, Schram KH, Borysko KZ, Wotring LL, Townsend LB (1989) Anal Biochem 178:102–106

    Article  CAS  Google Scholar 

  16. Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002) Anal Chem 74:6224–6229

    Article  CAS  Google Scholar 

  17. Feng Y, Zhu J (2006) Anal Chem 78:6608–6613

    Article  CAS  Google Scholar 

  18. Mengel-Jorgensen J, Sanchez JJ, Borsting C, Kirpekar F, Morling N (2004) Anal Chem 76:6039–6045

    Article  CAS  Google Scholar 

  19. Soukup-Hein RJ, Remsburg JW, Dasgupta PK, Armstrong (2007) Anal Chem 79:7346–7352

    Article  CAS  Google Scholar 

  20. Lin X, Gerardi AR, Breitbach ZS, Armstrong DW, Colyer CL (2009) Electrophoresis 30:3918–3925

    Article  CAS  Google Scholar 

  21. Remsburg JW, Soukup-Hein RJ, Crank JA, Breitbach ZS, Payagala T, Armstrong DW (2008) J Am Soc Mass Spectrom 19:261–269

    Article  CAS  Google Scholar 

  22. Soukup-Hein RJ, Remsburg JW, Breitbach ZS, Sharma PS, Payagala T, Wanigasekara E, Huang J, Armstrong DW (2008) Anal Chem 80:2612–2616

    Article  CAS  Google Scholar 

  23. Martinelago PK, Anderson JL, Dasgupta PK, Armstrong DW, Al-Horr RS, Slingsby RW (2005) Anal Chem 77:4829–4835

    Article  Google Scholar 

  24. Warnke MM, Breitbach ZS, Dodbiba E, Wanigasekara E, Zhang X, Sharma PS, Armstrong DW (2008) J Am Soc Mass 20:529–538

    Article  Google Scholar 

  25. Warnke MM, Breitbach ZS, Dodbiba E, Crank JA, Payagala T, Sharma PS, Wanigasekara E, Zhang X, Armstrong DW (2009) Anal Chem Acta 633:232–237

    Article  CAS  Google Scholar 

  26. Breitbach ZS, Warnke MM, Wanigasekara E, Zhang X, Armstrong DW (2008) Anal Chem 80:8828–8834

    Article  CAS  Google Scholar 

  27. Zhang X, Wanigasekara E, Breitbach ZS, Dodbiba E, Armstrong D (2010) Rap Comm of Mass Spec 24:1113–1123

    Article  CAS  Google Scholar 

  28. Cech NB, Enke CG (2001) Mass Spectrom Rev 20:362–387

    Article  CAS  Google Scholar 

  29. Kebarle P, Yeunghaw H In Electrospray Ionization Mass Spectrometry; Cole, R.B. Ed. Wiley P: New York, 1997, p.14

  30. Sharma PS, Payagala T, Wanigasekara E, Wijeratne AB, Huang J, Armstrong DW (2008) Chem Mater 20:4182–4184

    Article  CAS  Google Scholar 

  31. Payagala T, Huang J, Breitbach ZS, Sharma PS, Armstrong D (2007) Chem Mater 19:5848–5850

    Article  CAS  Google Scholar 

  32. Wanigasekara E, Zhang X, Nanayakkara Y, Payagala T, Moon H, Armstrong DW (2009) Chem Mater 1:2126–2133

    CAS  Google Scholar 

  33. Isidoros B, Newshalme EA (1975) Biochem J 151:23–32

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Robert A. Welch Foundation for its monetary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodbiba, E., Breitbach, Z.S., Wanigasekara, E. et al. Detection of nucleotides in positive-mode electrospray ionization mass spectrometry using multiply-charged cationic ion-pairing reagents. Anal Bioanal Chem 398, 367–376 (2010). https://doi.org/10.1007/s00216-010-3949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3949-4

Keywords

Navigation