Skip to main content
Log in

Characterization of metal glycinate complexes by electrospray Q-TOF-MS/MS and their determination by capillary electrophoresis–ICP-MS: application to premix samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method was developed for the determination of metal complexes with glycine (glycinates, [M(Gly)x(H2O)y(SO4)z]n, where M denotes Zn, Cu, Mn and Fe) in premix samples used for the preparation of animal feeds enriched in essential trace elements. The method was based on the extraction of the glycinates with 10 mM ammonium acetate (pH 7.4) followed by their determination using capillary electrophoresis with ICP MS detection. The stability of the glycinates in solution was verified by electrospray TOF-MS. Each supplement was shown to be a mixture of complexes, with polymerization degrees ranging from n = 1 to n = 4 (depending on the metal), that were fully or partially dehydrated. The metal glycine complex moiety was found to be preserved during capillary electrophoresis. The detection limits, calculated as three times the standard deviation of the blank plus the blank, were between 0.05 and 0.2 µg mL−1 (as the metal), and the calibration curves were linear, allowing the analysis of premix samples. Repeatability for glycinate standards was below 12%, and analytical precision was typically within 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guérinot ML, Salt DE (2001) Plant Physiol 125:164–167

    Article  Google Scholar 

  2. Spears JW (1996) Anim Feed Sci Technol 58:151–163

    Article  Google Scholar 

  3. Cao J, Henry PR, Guo R, Holwerda RA, Toth JP, Littell RC, Miles RD, Ammerman CB (2000) J Anim Sci 78:2039–2054

    CAS  Google Scholar 

  4. Spears JW, Schlegel P, Seal MC, Lloyd KE (2004) Livest Prod Sci 90:211–217

    Article  Google Scholar 

  5. Ettle T, Schlegel P, Roth FX (2008) J Anim Physiol Anim Nutr 92:35–43

    CAS  Google Scholar 

  6. Hansen SL, Schlegel P, Legleiter LR, Lloyd KE, Spears JW (2008) J Anim Sci 86:173–179

    Article  CAS  Google Scholar 

  7. Szpunar J (2005) Analyst 130:442–465

    Article  CAS  Google Scholar 

  8. Szpunar J, Lobinski R, Prange A (2003) Appl Spectrosc 57:102A–112A

    Article  CAS  Google Scholar 

  9. Ouerdane L, Mari S, Czernic P, Lebrun M, Lobinski R (2006) J Anal At Spectrom 21:676–683

    Article  CAS  Google Scholar 

  10. Xuan Y, Scheuermann EB, Meda AR, Hayen H, von Wiren N, Weber G (2006) J Chromatogr A 1136:73–81

    Google Scholar 

  11. Weber G, von Wiren N, Hayen H (2008) J Sep Sci 31:1615–1622

    Article  CAS  Google Scholar 

  12. Künnemeyer J, Terborg L, Meermann B, Brauckmann C, Möller I, Scheffer A, Karst U (2009) Environ Sci Technol 43:2884–2890

    Article  Google Scholar 

  13. Hemström P, Nygren Y, Björn E, Irgum K (2008) J Sep Sci 31:599–603

    Article  Google Scholar 

  14. Sadi BBM, Vonderheide AP, Gong JM, Schroeder JI, Shann JR, Caruso JA (2008) J Chromatogr B 861:123–129

    Google Scholar 

  15. Aureli F, Ciardullo S, Pagano M, Raggi A, Cubadda F (2008) J Anal At Spectrom 23:1009–1016

    Article  CAS  Google Scholar 

  16. Baralkiewicz D, Kozka M, Piechalak A, Tomaszewska B, Sobczak P (2009) Talanta 79:493–498

    Article  CAS  Google Scholar 

  17. Vacchina V, Polec K, Szpunar J (1999) J Anal At Spectrom 14:1557–1566

    Article  CAS  Google Scholar 

  18. Timerbaev AR (2009) Trends Anal Chem 28:416–425

    Article  CAS  Google Scholar 

  19. Michalke B (2005) Electrophor 26:1584–1597

    Article  CAS  Google Scholar 

  20. Bytzek AK, Enyedy EA, Kiss T, Keppler BK, Hartinger CG (2009) Electrophor 30:4075–4082

    Article  CAS  Google Scholar 

  21. Groessl M, Hartinger CG, Dyson PJ, Keppler BK (2008) J Inorg Biochem 102:1060–1065

    Article  CAS  Google Scholar 

  22. Baker SA, Miller-Ihli NJ (2000) Spectrochim Acta Part B 55:1823–1832

    Google Scholar 

  23. Michalke B, Berthele A, Mistriotis P, Ochsenkühn-Petropoulou M, Halbach S (2007) J Trace Elem Med Biol 21:4–9

    Article  CAS  Google Scholar 

  24. Michalke B (2004) J Chromatogr A 1050:69–76

    Google Scholar 

  25. Schaumlöffel D, Ouerdane L, Bouyssière B, Lobinski R (2003) J Anal At Spectrom 18:120–127

    Article  Google Scholar 

  26. Mounicou S, Polec K, Chassaigne H, Potin-Gautier M, Lobinski R (2000) J Anal At Spectrom 15:635–642

    Article  CAS  Google Scholar 

  27. Prange A, Pröfock D (2005) Anal Bioanal Chem 383:372–389

    Article  CAS  Google Scholar 

  28. Corr JJ, Anacleto JF (1996) Anal Chem 68:2155–2163

    Article  CAS  Google Scholar 

  29. Oguey S, Neels A, Stoeckli-Evans H (2008) In: Schlegel P, Durosoy S, Jongbloed AW (eds) Trace elements in animal production system. Wageningen, The Netherlands

  30. Bouchonnet S, Hoppilliard Y, Ohanessian G (1995) J Mass Spectrom 30:172–179

    Article  CAS  Google Scholar 

  31. Hoppilliard Y, Rogalewicz F, Ohanessian G (2000) Int J Mass Spectrom 204:267–280

    Google Scholar 

  32. Seto C, Stone AJ (1999) Int J Mass Spectrom 192:289–302

    Article  CAS  Google Scholar 

  33. Xu Y, Zhang X, Yergey AL (1996) J Am Soc Mass Spectrom 7:25–29

    Article  CAS  Google Scholar 

  34. Boudesocque S, Damaj Z, Dupont L, Behr JB, Guillon E (2008) J Inorg Biochem 102:1514–1522

    Article  CAS  Google Scholar 

  35. Lide DR (ed)(2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton

  36. Olesik J (2000) In: Caruso JA, Ackley KL (eds) Elemental speciation. new approaches for trace element analaysis, comprehensive analytical chemistry, vol. XXXIII. Elsevier, Amsterdam

    Google Scholar 

  37. Tastet L, Schaumlöffel D, Yiannikouris A, Power R, Lobinski R (2010) J Trace Elem Med Biol (in press)

  38. Mayer BX (2001) J Chromatogr A 907:21–37

    Google Scholar 

  39. Fischer AC, Verburg TG, Wolterbeek HAT (2007) Talanta 72:54–59

    Article  CAS  Google Scholar 

  40. May JM, Qu ZC (1999) Mendiratta S 57:1275–1282

    CAS  Google Scholar 

  41. Moog PR, Brüggemann W (1994) Plant Soil 165:241–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Conseil Régional d'Aquitaine (20071303002PFM) and FEDER (31486/08011464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Vacchina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacchina, V., Oguey, S., Ionescu, C. et al. Characterization of metal glycinate complexes by electrospray Q-TOF-MS/MS and their determination by capillary electrophoresis–ICP-MS: application to premix samples. Anal Bioanal Chem 398, 435–449 (2010). https://doi.org/10.1007/s00216-010-3907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3907-1

Keywords

Navigation