Skip to main content
Log in

Iron reductase systems on the plant plasma membrane—A review

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is an obligatory prerequisite for iron uptake and is mediated by redox systems localized on the plasma membrane. Plasma membrane-bound iron reductase systems catalyze the transmembrane electron transport from cytosolic reduced pyridine nucleotides to extracellular iron compounds. Natural and synthetic ferric complexes can act as electron acceptors.

This paper gives an overview about the present knowledge on iron reductase systems at the plant plasma membrane with special emphasis on biochemical characteristics and localisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FeCh:

ferric chelate(s)

FeCh-R:

ferric chelate reductase

FeCit:

FeIII-Citrate

FeCN:

ferricyanide

FeCN-R:

ferricyanide reductase

FeEDTA:

FeIII-EDTA

LPC:

lysophosphatiolylcholine

NR:

nitrate reductase

PM:

plasma membrane

TX 100:

Triton × 100

References

  • Alcántara E, De laGuardia M D and Romera F J 1991 Plasmalemma redox activity and H+ extrusion in roots of Fe-deficient cucumber plants. Plant Physiol. 96, 1034–1037.

    Google Scholar 

  • Allnutt F C T and Bonner W DJr. 1987a Characterization of iron uptake from ferrioxamine B by Chlorella vulgaris. Plant Physiol. 85, 746–750.

    Google Scholar 

  • Allnutt F C T and Bonner W DJr. 1987b Evaluation of reductive release as a mechanism for iron uptake from ferrioxamine B by Chlorella vulgaris. Plant Physiol. 85, 751–756.

    Google Scholar 

  • Anderson M A and Morel F M M 1980 Uptake of Fe(II) by a diatom in oxic culture medium. Mar. Biol. Lett. 1, 263–268.

    Google Scholar 

  • Ao T Y, Fan F, Korcak R F and Faust M 1985 Iron reduction by apple roots. J. Plant Nutr. 8, 629–644.

    Google Scholar 

  • Asard H, Horemans N and Caubergs R J 1992 Transmembrane electron transport in ascorbate-loaded plasma membrane vesicles from higher plants involves a b-type cytochrome. FEBS Lett. 306, 143–146.

    Article  PubMed  Google Scholar 

  • Askerlund P and Larsson C 1991 Transmembrane electron transport in plasma membrane vesicles loaded with an NADH-generating system or ascorbate. Plant Physiol. 96, 1178–1184.

    Google Scholar 

  • Askerlund P, Larsson C and Widell S 1988 Localization of donor and acceptor sites of NADH dehydrogenase activities using insideout and right-side-out plasma membrane vesicles from plants. FEBS Lett. 239, 23–28.

    Article  Google Scholar 

  • Askerlund P, Larssun C and Widell S 1989 Cytochromes of plant plasma membranes. Characterization by absorbance difference spectrophotometry and redox titration. Physiol. Plant. 76, 123–134.

    Google Scholar 

  • Askerlund P, Laurent P, Nakagawa H and Kader J C 1991 NADH-Ferricyanide reductase of leaf plasma membranes. Partial purification and immunological relation to potato tuber microsomal NADH-ferricyanide reductase and spinach leaf NADH-nitrate reductase. Plant Physiol. 95, 6–13.

    Google Scholar 

  • Barr R and Crane F L 1991 Modulation of plasma membrane redox reactions in plant cells. In Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Eds. F L Crane, D J Morré and H E Löw. Vol. II, 237–280. CRC Press Inc, Boca Raton, USA.

    Google Scholar 

  • Barr R, Sandelius A S, Crane F L and Murré D J 1986 Redox reactions in tonoplast and plasma membrane isolated from soybean hypocotyls by free-flow electrophoresis. Biochim. Biophys. Acta 852, 254–261.

    PubMed  Google Scholar 

  • Bienfait H F 1985 Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerg. Biomembr. 17, 73–83.

    Article  PubMed  Google Scholar 

  • Bienfait H F 1988a Proteins under control of the gene for Fe efficiency in tomato. Plant Physiol. 88, 785–787.

    Google Scholar 

  • Bienfait H F 1988b The Turbo reductase in plant plasma membranes. In Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth. Eds. F L Crane, D J Morré and H E Löw. pp 89–98. Plenum Press, New York, USA.

    Google Scholar 

  • Bienfait H F 1989 Prevention of stress in iron metabolism of plants. Acta Bot. Neerl. 38, 105–129.

    Google Scholar 

  • Bienfait H F and Scheffers M R 1992 Some properties of ferric citrate relevant to the iron nutrition of plants. Plant and Soil 143, 141–144.

    Article  Google Scholar 

  • Böttger M 1989 Transmembrane electron transfer of NADH loaded right side out vesicles. In Plant Membrane Transport: The Current Position. Eds. J Dainty, M I DeMichaelis, E Marrè and F Rasi-Caldognu. pp 55–60. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Böttger M and Lüthen H 1986 Possible linkage between NADH-oxidation and proton secretion in Zea mays L. roots. J. Exp. Bot. 37, 666–675.

    Google Scholar 

  • Böttger M, Crane F L and Barr R 1991 Physiological aspects of transplasma membrane electron transport in roots and cultured carrot tissue. In Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Eds. F L Crane, D J Morrè and H E Löw. Vol II, 207–236. CRC Press Inc, Boca Raton, USA.

    Google Scholar 

  • Bourdil I, Milat M L and Blein J P 1990 Effect of lysophosphatidylcholine on the NADH-ferricyanide reductase activity associated with the plasma membranes of corn roots. Plant Sci. 70, 143–153.

    Article  Google Scholar 

  • Brown J C and Ambler J E 1974 Iron-stress response in tomato (Lycopersicon esculentum) 1. Sites of Fe reduction, absorption and transport. Physiol. Plant. 31, 221–224.

    Google Scholar 

  • Brown J C and Jolley V D 1986 An evaluation of concepts related to iron deficiency chlorosis. J. Plant Nutr. 9, 175–182.

    Google Scholar 

  • Brown J C and Jolley V D 1988 Strategy I and Strategy II mechanisms affecting iron availability to plants may be established too narrow or limited. J. Plant Nutr. 11, 1077–1097.

    Google Scholar 

  • Brüggemann W and Moog P R 1989 NADH-dependent Fe3+-EDTA and oxygen reduction by plasma membrane vesicles from barley roots. Physiol. Plant. 75, 245–254.

    Google Scholar 

  • Brüggemann W, Maas-Kantel K and Moog P R 1993 Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 151–155.

    Article  Google Scholar 

  • Brüggemann W, Moog P R, Nakagawa H, Janiesch P and Kuiper P J C 1990 Plasma membrane-bound Fe3+-EDTA reductase and iron deficiency in tomato Lycopersicon esculentum. Is there a Turbo reductase? Physiol. Plant. 79, 339–346.

    Article  Google Scholar 

  • Buckhout T J and Hrubec T C 1986 Pyridine nucleotide-dependent ferricyanide reduction associated with isolated plasma membranes of maize (Zea mays L.) roots. Protoplasma 135, 144–154.

    Article  Google Scholar 

  • Buckhout T J and Luster D G 1991 Pyridine nucleotide-dependent reductases of the plant plasma membrane. In Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Eds. F L Crane, H E Löw and D J Morré. Vol. II Plants. pp 61–84. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Buckhout T J, Luster D G and Chaney R L 1989 Iron-stress induced redox activity in tomato (Lycopersicon esculentum Mill.) is localized on the plasma membrane. Plant Physiol. 90, 151–156.

    Google Scholar 

  • Chaney R L 1988 Plants can utilize iron from Fe-N, N,-di-(2-hydroxybenzoyl)-ethylenediamine-N, N,-diacetic acid, a ferric chelate with 106 greater formation constant than Fe-EDDHA. J. Plant Nutr. 11, 1033–1050.

    Google Scholar 

  • Chaney R L 1989 Kinetics of ferric chelate reduction by roots of iron-deficient peanut (Arachis hypogeae). Acta Bot. Neerl. 38, 153–163.

    Google Scholar 

  • Chaney R L and Bell P F 1987 The complexity of iron nutrition: Lessons for plant-soil interaction research. J. Plant Nutr. 10, 963–994.

    Google Scholar 

  • Chaney R L, Brown J D and Tiffin L O 1972 Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50, 208–213.

    Google Scholar 

  • Chosack E, Rubinstein B and Reinhold L 1991 Effect of iron deficiency on the electron transport process of plasmalemma-enriched vesicles isolated from cotton roots. Plant Sci 77, 163–172.

    Article  Google Scholar 

  • Cornett J D and Johnson G V 1991 Ferric chelate reduction by suspension culture cells and roots of soybean: a kinetic comparison. Plant and Soil 130, 75–80.

    Article  Google Scholar 

  • Corzo A, Plasa R and Ullrich W R 1991 Extracellular ferricyanide reduction and nitrate reductase activity in the green alga Monoraphidium braunii. Plant Sci. 75, 221–228.

    Article  Google Scholar 

  • De LaGuardia M D and Alcántara E 1993 Ferric chelate reduction by sunflower leaves. Plant Physiol. Suppl. 108, 610.

    Google Scholar 

  • Dolcet-Sanjuan R, Mok D W S and Mok M C 1992 Characterization and in vitro selection for iron efficiency in Pyrus and Cydonia. In Vitro Cell. Dev. Biol. 28P, 25–29.

    Google Scholar 

  • Gautier H, Vavasseur A, Lasceve G and Bourdet A M 1992 Redox processes in the blue light response of guard cell protoplasts of Commelina communis L. Plant Physiol. 98, 34–38.

    Google Scholar 

  • Hassidim M, Rubinstein B, Lerner H R and Reinhold L 1987 Generation of a membrane potential by electron transport in plasmalemma-enriched vesicles of cotton and radish. Plant Physiol. 85, 872–875.

    Google Scholar 

  • Holden M J, Luster D G, Chaney R L, Buckhout T J and Robinson C 1991 Fe3+-chelate reductase activity of plasma membranes isolated from tomato (Lycopersicon esculentum Mill.) roots: Comparison of enzymes from Fe-deficient and Fe-sufficient roots. Plant Physiol. 97, 537–544.

    Google Scholar 

  • Holden M J, Luster D G, Chaney R L and Buckhout T J 1992 Enzymology of ferric chelate reduction at the root plasma membrane. J. Plant Nutr. 15, 1667–1678.

    Google Scholar 

  • Holden M J, Luster D G and Chaney R L 1994 Enzymatic iron reduction at the root plasma membrane: Partial purification of the NADH-Fe chelate reductase. In Biochemistry of Trace Metals in the Plant Rhizosphere. Eds. J A Manthey, D E Crowley and D G Luster. Lewis Publishers, Chelsea, MI, USA. (In press).

    Google Scholar 

  • Jones G J and Morel F M M 1988 Plasmalemma redox activity in the diatom Thalassiosira. Plant Physiol. 87, 143–147.

    Google Scholar 

  • Jones G J, Palenik B P and Morel M M 1987 Trace metal reduction by phytoplankton: The role of plasmalemma redox enzymes. J. Phycol. 23, 237–244.

    Google Scholar 

  • Larsson C and Moller I M (Eds) 1990 The Plant Plasma Membrane: Structure, Function and Molecular Biology. Springer-Verlag, Heidelherg, FRG.

    Google Scholar 

  • Larsson C, Widell S and Kjellhom P 1987 Preparation of high-purity plasma membranes. Methods Enzymol. 148, 558–568.

    Google Scholar 

  • Lass B, Thiel G and Ullrich-Eberius C I 1986 Electron transport across the plasmalemma of Lemna gibba G1. Planta 169, 251–259.

    Article  Google Scholar 

  • Luster D G and Buckhout T J 1988 Characterization and partial purification of multiple electron transport activities in plasma membranes from maize (Zea mays) roots. Physiol. Plant. 73, 339–347.

    Google Scholar 

  • Marschner H, Römheld V and Knissel M 1986 Different strategies in higher plants in mobilisation and uptake of iron. J. Plant Nutr. 9, 695–713.

    Google Scholar 

  • Moog P R and Brüggemann W 1992a Isolation and purification of plasma membrane-bound NADH:FeIII chelate reductase from iron-deficient tomato roots. Acta Bot. Neerl. 41, 211.

    Google Scholar 

  • Moog P R and Brüggemann W 1992b Purification of Fe3+-chelate reductase by native PAGE and FPLC. Abstracts of the 9th International Workshop on Plant Membrane Biology. Monterey, CA, USA. p 237.

  • Moog P R, van der Kooij T A W, Brüggemann W, Schiefelbein J W and Kuiper P J C 1994 Responses to iron deficiency in Arabidopsis thaliana: The Turbo reductase does not depend on the formation of root hairs and transfer cells. Planta (In press).

  • Pirsun A and Ruppel H G 1962 Uber die Induktion einer Teilungshemmung in synchronen Kulturen von Chlorella. Arch. Mikrobiol. 42, 299–309.

    Article  PubMed  Google Scholar 

  • Prins H B A and Elzenga J T M 1991 Electrical effects of the plasma membrane bound reductase on cell membrane potential. In Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Eds. F L Crane, D J Morré and H E Löw. Vol II. pp 207–236. CRC Press Inc, Boca Raton, USA.

    Google Scholar 

  • Qui Z-S, Rubinstein B and Stern A I 1985 Evidence for electron transport across the plasma membrane of Zea mays root cells. Planta 165, 383–391.

    Article  Google Scholar 

  • Redinhaugh M G and Camphell W H 1983 Reduction of ferric citrate catalyzed by NADH: nitrate reductase. Biochem. Biophys. Res. Com. 114, 1182–1188.

    PubMed  Google Scholar 

  • Römheld V 1987 Existence of two different strategies for the acquisition of iron in higher plants. In Iron Transport in Microbes, Plants and Animals. Eds. D van der Helm, J B Neilands and G Winkelmann. pp 353–374. Verlag Chemie, Weinheim, FRG.

    Google Scholar 

  • Römheld V and Marschner H 1983 Mechanism of iron uptake by peanut plants I. Fe(III) reduction, chelate splitting and release of phenolics. Plant Physiol. 71, 949–954.

    Google Scholar 

  • Rosenfield C L, Reed D W and Kent M W 1991 Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L. Plant Physiol. 95, 1120–1124.

    Google Scholar 

  • Rubinstein B and Stern A I 1986 Relationship of transplasmalemma redox activity to proton and solute transport by Zea mays. Plant Physiol. 80, 805–811.

    Google Scholar 

  • Rubinstein B, Stern A I and Stout R G 1984 Redox activity at the surface of oat root cells. Plant Physiol. 76, 386–391.

    Google Scholar 

  • Sandelius A S, Barr R, Crane F L and Morré D J 1986 Redox reactions of plasma membranes isolated from soybean hypocotyls by phase partitioning. Plant Sci. 48, 1–10.

    Article  Google Scholar 

  • Schmidt W 1992 Plasmalemmagebundene Redoxsysteme und ihre Funktion bei der Eisenaneignung höherer Pflanzen. Ph. D. thesis. University of Oldenburg, FRG.

  • Schmidt W 1993 Iron stress-induced redox reactions in bean roots. Physiol. Plant. 89, 448–452.

    Article  Google Scholar 

  • Schmidt W 1994 In vivo analysis of constitutive and iron stress-inducible redox systems in roots of Plantago lanceolata L. Plant and Soil.

  • Schmidt W and Janiesch P 1991a Ferric reduction by Geum urbanum: A kinetic study. J. Plant Nutr. 14, 1023–1034.

    Google Scholar 

  • Schmidt W and Janiesch P 1991b Specificity of the electron donor for transmembrane redox systems in bean (Phaseolus vulgaris L.) roots. J. Plant Physiol. 138, 450–453.

    Google Scholar 

  • Schmidt W, Janiesch P and Brüggemann W 1990 FeEDTA reduction in roots of Plantago lanceolata by a NADH-dependent plasma membrane-bound redox system. J. Plant Physiol. 136, 51–55.

    Google Scholar 

  • Sijmuns P C and Bienfait H F 1983 Source of electrons for extracellular Fe(III) reduction in iron-deficient bean roots. Physiol. Plant. 59, 409–415.

    Google Scholar 

  • Sijmons P C, Lanfermeijer F C, DeBoer A H, Prins H B and Bienfait H F 1984a Depolarization of cell membrane potential during trans-plasma membrane electron transfer to extracellular electron acceptors in iron-deficient roots of Phaseolus vulgaris L. Plant Physiol. 76, 943–946.

    Google Scholar 

  • Sijmons P C, van denBriel W and Bienfait H F 1984b Cytosolic NADPH is the electron donor for extracellular Fe(III) reduction in iron-deficient roots of Phaseolus vulgaris. Plant Physiol. 75, 219–221.

    Google Scholar 

  • Spiro T G, Pape L and Saltman P 1967 The hydrolytic polymerization of ferric citrate. I. The chemistry of the polymer. J. Am. Chem. Soc. 89, 5555–5559.

    Article  Google Scholar 

  • Susin S, Ahadia A and Ahadia J 1993 Characterization of the reductase activity in root plasma membranes from iron-sufficient and iron-deficient sugar beet (Beta vulgaris L.). Abstracts of the 7th International Symposium on Iron Nutrition and Interactions in Plants, Zaragoza, Spain. V-12.

  • Tagaki S, Nomoto K and Takemoto T 1984 Physiological aspects of mugineic acid, a possible phytosiderophore of gramineous plants. J. Plant Nutr. 7, 469–477.

    Google Scholar 

  • Thiel G and Kirst G O 1988 Transmembrane ferricyanide reduction and membrane properties in the euryhaline charophyte Lamprothamnium papulosum. J. Exp. Bot. 39, 641–654.

    Google Scholar 

  • Tipton C L and Thuwson J 1985 Fe(III) reduction in cell wall of soybean roots. Plant Physiol. 79, 432–435.

    Google Scholar 

  • Tischner R, Ward M R and Huffaker R C 1989 Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana. Planta 178, 19–24.

    Article  PubMed  Google Scholar 

  • Toulon V, Sentenac H, Thibaud J B, Davidian J C, Moulineau C and Grignon C 1992 Role of apoplast acidification by the H+ pump. Planta 186, 212–218.

    Article  Google Scholar 

  • Valenti V, Minardi P, Guerrini F, Mazzucchi U and Pupillo P 1989 Increase of plasma membrane NADH-duroquinone reductase in tobacco leaves treated with protein-lipopolysaccharide complexes. Plant Physiol. Biochem. 27, 569–576.

    Google Scholar 

  • Valenti V, Scalorbi M and Guerrini F 1991 Induction of plasma membrane NADH-ferricyanide reductase following iron stress in tomato roots. Plant Physiol. Biochem. 29, 249–255.

    Google Scholar 

  • Walter A, Pinton R, Römheld V and Marschner H 1993 Reduction of naturally occurring iron chelates by intact plant roots and isolated plasma membrane vesicles of cucumber. Abstracts of the 7th International Symposium on Iron Nutrition and Interactions in Plants, Zaragoza, Spain. III 10.

  • Ward M R, Tischner R and Huffaker R C 1988 Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings. Plant Physiol. 88, 1141–1145.

    PubMed  Google Scholar 

  • Ward M R, Grimes H D and Huffaker R C 1989 Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta 177, 470–475.

    Article  PubMed  Google Scholar 

  • Warner R C and Weher I 1953 The cupric and ferric citrate complexes. J. Am. Chem. Soc. 75, 5086–5094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moog, P.R., Brüggemann, W. Iron reductase systems on the plant plasma membrane—A review. Plant Soil 165, 241–260 (1994). https://doi.org/10.1007/BF00008068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008068

Key words

Navigation