Skip to main content
Log in

Spectroscopic and analytical characteristics of an inductively coupled argon plasma combined with hydride generation with or without simultaneous introduction of the sample aerosol for optical emission spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A radially viewed inductively coupled argon plasma was used for optical emission spectrometry of volatile species formed by reaction with NaBH4 (hydride generation). The volatile hydrides were either introduced into the plasma alone or at the same time as a sample aerosol generated by pneumatic nebulization with a commercially available Concomitant Metals Analyzer. The effects of the forward power, the presence of pre-reducing agents [(NH2)2SC, KI, KBr and hot HCl], the occurrence of easily ionized elements (Ca, K, Mg and Na) in the analyte solutions on the excitation temperature (as measured via Ar atomic lines) and the electron number density were investigated for both of the sample introduction modes applied. The detection limits and the signal-to-background intensity ratios for As, Bi, Sb, Se and Sn lines were also evalutated and were observed to deteriorate with increasing power. When simultaneous hydride generation and pneumatic nebulization was employed under optimized experimental conditions, detection limits of 3.5, 2.9, 4.3, 1.5 and 2.1 μg L−1 for As, Bi, Sb, Se and Sn, respectively, were obtained, and the intensities of the analytical lines for elements that do not form volatile hydrides were found to be 40% (Cd), 30% (Ni), 20% (Co, Cr, Fe, Mn and Zn) and 10% (Cu, Mg, V) greater than those obtained when only pneumatic nebulization was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campbell AD (1992) Pure Appl Chem 64:227–244

    Article  CAS  Google Scholar 

  2. Broekaert JAC (2002) Analytical atomic spectrometry with flames and plasmas. Wiley-VCH, Weinheim

    Google Scholar 

  3. Nakahara T (1991) Spectrochim Acta Rev 14:95–109

    CAS  Google Scholar 

  4. Pohl P (2004) Trend Anal Chem 23:87–101

    Article  CAS  Google Scholar 

  5. Zoltan T, Benzo Z, Murillo M, Marcano E, Gomez C, Salas J, Quintal M (2005) Anal Bioanal Chem 382:1419–1430

    Article  CAS  Google Scholar 

  6. Rojas I, Murillo M, Carrion N, Chirinos J (2003) Anal Bioanal Chem 376:110–117

    CAS  Google Scholar 

  7. Carrion N, Murillo M, Montiel E, Diaz D (2003) Spectrochim Acta Part B 58:1375–1389

    Article  Google Scholar 

  8. Gomez LR, Marquez GD, Chirinos JR (2006) Anal Bioanal Chem 386:188–195

    Article  CAS  Google Scholar 

  9. Benzo Z, Maldonado D, Chirinos J, Marcano E, Gomez C, Quintal M, Salas J (2008) Instr Sci Technol 36:598–610

    Article  CAS  Google Scholar 

  10. Benzo Z, Maldonado D, Chirinos J, Marcano E, Gomez C, Quintal M, Salas J (2009) Microchem J 93:127–132

    Article  CAS  Google Scholar 

  11. McLaughlin RLJ, Brindle ID (2002) J Anal At Spectrom 17:1540–1548

    Article  CAS  Google Scholar 

  12. Asfaw A, Wibetoe G (2005) Anal Bioanal Chem 382:173–179

    Article  CAS  Google Scholar 

  13. Wiltsche H, Brenner IB, Prattes K, Knapp G (2008) J Anal At Spectrom 23:1253–1262

    Article  CAS  Google Scholar 

  14. Mulugeta M, Wibetoe G, Engelsen CJ, Asfaw A (2009) Anal Bioanal Chem 393:1015–1024

    Article  CAS  Google Scholar 

  15. Pohl P, Zyrnicki W (2000) Chem Anal Warsaw 45:699–708

    CAS  Google Scholar 

  16. Pohl P, Lesniewicz A, Zyrnicki W (2003) Int J Environ Anal Chem 83:963–970

    Article  CAS  Google Scholar 

  17. Matusiewicz H, Slachcinski M (2007) Microchem J 86:102–111

    Article  CAS  Google Scholar 

  18. Walters PE, Barnardt CA (1988) Spectrochim Acta Part B 43:325–337

    Article  Google Scholar 

  19. Murillo M, Mermet JM (1989) Spectrochim Acta Part B 44:359–366

    Google Scholar 

  20. Novotny I, Farinas JC, Jia-liang W, Poussel E, Mermet JM (1996) Spectrochim Acta Part B 51:1517–1526

    Article  Google Scholar 

  21. Batistoni DA, Garavaglia RN, Rodriguez RE (2000) Fresenius J Anal Chem 366:221–227

    Article  CAS  Google Scholar 

  22. Mermet JM (1987) Spectroscopic diagnostics: basic concepts (Chap 10). In: Boumans PWJM (ed) Inductively coupled plasma emission spectroscopy. Part II: applications and fundamentals. Wiley, New York

  23. Hasegawa T, Umemoto M, Haraguchi H, Hsiech C, Montaser A (1992) Fundamental properties of inductively coupled plasmas (Chap 8). In: Heitkemper DT, Wolnik KA, Fricke FL, Caruso JA (eds) Inductively coupled plasmas in analytical atomic spectrometry. Wiley-VCH, New York

  24. Jarosz J, Mermet JM, Robin JP (1978) Spectrochim Acta Part B 33:55–78

    Article  Google Scholar 

  25. Wiese WL, Smith MW, Miles BM (1969) Wavelengths and atomic transition probabilities for atoms and atomic ions (NSRDS-NBS 22). US Government Printing Office, Washington, DC

  26. Corliss CH, Bozman WR (1962) Experimental transition probabilities of spectral lines of seventy elements (National Bureau of Standards Monograph 53). US Government Printing Office, Washington, DC

  27. Reader J, Corliss CH (1980) Wavelengths and atomic transition probabilities for atoms and atomic ions (NSRDS-NBS 68). US Government Printing Office, Washington, DC

  28. Griem HR (1964) Plasma spectroscopy. McGraw-Hill Inc., New York

    Google Scholar 

  29. Wlodarczyk M, Zyrnicki W (2003) Spectrochim Acta Part B 58:511–522

    Article  Google Scholar 

  30. Bings NH, Bogaerts A, Broekaert JAC (2008) Anal Chem 80:4317–4347

    Article  CAS  Google Scholar 

  31. Grotti M, Lagomarsino C, Mermet JM (2006) J Anal At Spectrom 21:963–969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, P., Broekaert, J.A.C. Spectroscopic and analytical characteristics of an inductively coupled argon plasma combined with hydride generation with or without simultaneous introduction of the sample aerosol for optical emission spectrometry. Anal Bioanal Chem 398, 537–545 (2010). https://doi.org/10.1007/s00216-010-3902-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3902-6

Keywords

Navigation