Skip to main content
Log in

Liquid chromatography with complementary electrospray and inductively coupled plasma mass spectrometric detection of ferrocene-labelled peptides and proteins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Succinimidylferrocenyl propionate (SFP) is introduced as labelling agent for amino functions in peptides and proteins. The resulting derivatives are characterised by considerably lower polarity compared with the native analytes and can thus be well separated by means of reversed phase liquid chromatography (RP-LC). The reaction products are characterised by electrospray ionisation mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). A further advantage of the method is a simple and straightforward derivatisation protocol. Different basic and acidic model proteins as lysozyme, ß-lactoglobulin A and insulin were derivatised using SFP. Furthermore, the first dual-labelling strategy of thiol and amino groups with ferrocene-based reagents is presented. Whereas the amino groups were derivatised with SFP, the thiol groups were functionalised by reaction with ferrocenecarboxylic acid(2-maleimidoyl)ethylamide. Again, LC/ESI-MS is a suitable tool to characterise the modified peptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo JL, Hammarqvist F, Lind IA, Andersson K, Wernerman K (1995) J Chromatogr B 670:29–36

    Article  CAS  Google Scholar 

  2. Bettmer J, Jakubowski N, Prange A (2006) Anal Bioanal Chem 386:7–11

    Article  CAS  Google Scholar 

  3. Ahrends R, Pieper S, Kühn A, Weisshoff H, Hamester M, Lindemann T, Scheler T, Lehmann K, Taubner K, Linscheid MW (2007) Mol Cell Proteomics 6:1907–1916

    Article  CAS  Google Scholar 

  4. Salmain M, Jaouen G (2003) C R Chimie 6:249–258

    CAS  Google Scholar 

  5. El Amouri H, Besace Y, Vaissermann J, Jaouen G (1996) J Organomet Chem 515:103–107

    Article  Google Scholar 

  6. Giese RW, Vallee BL (1972) J Am Chem Soc 94:6199–6200

    Article  CAS  Google Scholar 

  7. Peterlik M (1967) Monatsh Chem 98:2133–2134

    Article  CAS  Google Scholar 

  8. Tanaka M, Shimada K, Nambara T (1984) J Chromatogr 292:410–411

    Article  CAS  Google Scholar 

  9. Shimada K, Orii S, Tanaka M, Nambara T (1986) J Chromatogr 352:329–335

    Article  CAS  Google Scholar 

  10. Seiwert B, Henneken H, Karst U (2004) J Am Soc Mass Spectrom 15:1727–1736

    Article  CAS  Google Scholar 

  11. Seiwert B, Hayen H, Karst U (2008) J Am Soc Mass Spectrom 19:1–7

    Article  CAS  Google Scholar 

  12. Eckert H, Koller M (1990) J Liq Chromatogr 13:3399–3414

    Article  CAS  Google Scholar 

  13. Koller M (1990) German Patent 3919317-A1, Chem. Abstr. 115:25536

  14. Anderson GW, Zimmermann JE, Callahan FM (1964) J Am Chem Soc 86:1839–1842

    Article  CAS  Google Scholar 

  15. Eckert H, Koller M (1990) Z Naturforsch 45b:1709–1714

    Google Scholar 

  16. Shimada K, Oe T, Tanaka M, Nambara T (1989) J Chromatogr 487:247–255

    Article  CAS  Google Scholar 

  17. Cox RL, Schneider TW, Koppang MD (1992) Anal Chim Acta 262:145–159

    Article  CAS  Google Scholar 

  18. Bomke S, Seiwert B, Dudek L, Effkemann S, Karst U (2009) Anal Bioanal Chem 393:247–256

    Article  CAS  Google Scholar 

  19. van Staveren DR, Metzler-Nolte N (2004) Chem Rev 104:5931–5985

    Article  CAS  Google Scholar 

  20. Seiwert B, Karst U (2008) Anal Bioanal Chem 390:181–200

    Article  CAS  Google Scholar 

  21. Rosman KJR, Taylor PDP (1999) J Anal At Spectrom 15:5N

    Google Scholar 

  22. Ingle C, Langford N, Harvey L, Dainty JR, Armah C, Fairweather-Tait S, Sharp B, Crews H, Rose M, Lewis J (2002) J Anal At Spectrom 17:1498–1501

    Article  CAS  Google Scholar 

  23. Harrington CF, Elahi S, Merson SA, Ponnampalavanar P (2994) J AOAC Int 87:253–258

    Google Scholar 

  24. Takatera K, Watanabe T (1991) Anal Sci 7:695–698

    Article  CAS  Google Scholar 

  25. Aňorbe MG, Messerschmidt J, Feldmann I, Jakubowski N (2007) J Anal At Spectrom 22:917–924

    Article  CAS  Google Scholar 

  26. Estela del Castillo Busto M, Montes Bayón M, Blanco-González E, Meija J, Sanz-Medel A (2005) Anal Chem 77:5615–5621

    Article  CAS  Google Scholar 

  27. Rodríguez SA, Blanco-González E, Alvarez-Llamas G, Montes Bayón M, Sanz-Medel A (2005) Anal Bioanal Chem 383:390–397

    Article  CAS  Google Scholar 

  28. Estela del Castillo Busto M, Montes Bayón M, Bettmer J, Sanz-Medel A (2007) Analyst 133:379–384

    Article  CAS  Google Scholar 

  29. Marshall PS, Leavens B, Heudi O, Ramirez-Molina C (2004) J Chromatogr A 1056:3–12

    CAS  Google Scholar 

  30. Deng A-P, Liu H-T, Jiang S-J, Huang H-J, Ong C-W (2002) Anal Chim Acta 472:55–61

    Article  CAS  Google Scholar 

  31. Panchaud A, Hansson J, Affolter M, Rhlid RB, Piu S, Moreillon P, Kussmann M (2008) Mol Cell Proteomics 7:800–812

    CAS  Google Scholar 

  32. Lang S, Spratt DE, Guillemette JG, Palmer M (2005) Anal Biochem 342:271–279

    Article  CAS  Google Scholar 

  33. Seiwert B, Hayen H, Karst U (2007) Anal Chem 79:7131–7138

    Article  CAS  Google Scholar 

  34. Fasman GD (ed) (1989) Practical handbook of biochemistry and molecular biology. CRC, Boca Raton, FL, pp 31

  35. Canfield RE (1962) J Biol Chem 238:2698–2707

    Google Scholar 

  36. Jolles P (1996) Angew Chem Int Ed 8:227–239

    Google Scholar 

  37. Derewenda U, Dodson GG, Diamond R (eds) (1993) Molecular structures in biology. Oxford University Press 260

  38. Conaway-Jacobs A, Lewin LM (1971) Anal Biochem 43:394–400

    Article  Google Scholar 

  39. Brownlow S, Morais Cabral JH, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1997) Structure 5:481–495

    Article  CAS  Google Scholar 

  40. Prange A, Pröfrock D (2008) J Anal Atomic Spectrom 23:432–459

    Article  CAS  Google Scholar 

  41. Kahn M (1984) J Pharm Sci 73:1767–1771

    Article  Google Scholar 

  42. Smyth DG, Nagamatsu A, Fruton JS (1960) J Am Chem Soc 82:4600–4604

    Article  CAS  Google Scholar 

  43. Seiwert B, Karst U (2007) Anal Bioanal Chem 388:1633–1642

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the Fonds der Chemischen Industrie (Frankfurt/Main, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomke, S., Pfeifer, T., Meermann, B. et al. Liquid chromatography with complementary electrospray and inductively coupled plasma mass spectrometric detection of ferrocene-labelled peptides and proteins. Anal Bioanal Chem 397, 3503–3513 (2010). https://doi.org/10.1007/s00216-009-3123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3123-z

Keywords

Navigation