Skip to main content
Log in

Ferrocene-based derivatization in analytical chemistry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ferrocene-based derivatization has raised considerable interest in many fields of analytical chemistry. This is due to the well-established chemistry of ferrocenes, which allows rapid and easy access to a large number of reagents and derivatives. Furthermore, the electrochemical properties of ferrocenes are attractive with respect to their detection. This paper summarizes the available reagents, the reaction conditions and the different approaches for detection. While electrochemical detection is still most widely used to detect ferrocene derivatives, e.g., in the field of DNA analysis, the emerging combination of analytical separation methods with electrochemistry, mass spectrometry and atomic spectroscopy allows ferrocenes to be applied more universally and in novel applications where strongly improved selectivity and limits of detection are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AAS:

atomic absorption spectroscopy

AED:

atomic emission detection

APCI:

atmospheric pressure chemical ionization

CGE:

capillary gel electrophoresis

CV:

cyclic voltammetry

DPV:

differential pulse voltammetry

DRC:

dynamic reaction cell

EC:

electrochemistry

ECD:

electrochemical detection

ECL:

electrochemiluminescence

ESI:

electrospray ionization

FBA:

ferroceneboronic acid

FCA:

ferrocenecarboxylic acid

FCC:

ferrocenecarboxylic acid chloride

FEM:

N-(2-ferroceneethyl)maleimide

FMEA:

ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

ICP:

inductively coupled plasma

LC:

liquid chromatography

MALDI:

matrix-assisted laser desorption/ionization

MS:

mass spectrometry

OES:

optical emission spectroscopy

SWV:

square wave voltammetry

TOF:

time-of-flight

References

  1. Arrayas GR, Adrio J, Carretero JC (2006) Angew Chem Int Ed Engl 45:7674–7715

    Google Scholar 

  2. Astruc D (1995) Electron transfer and radical processes in transition-metal chemistry. Wiley-VCH, New York

    Google Scholar 

  3. Van Staveren DR, Metzler-Nolte N (2004) Chem Rev 104:5931–5985

    Google Scholar 

  4. Neuse EW (2005) J Inorg Organomet Polym Mater 15:3–32

    CAS  Google Scholar 

  5. Metzler-Nolte N (2006) Nachr Chem 54:966–970

    CAS  Google Scholar 

  6. Ali ZS, Tsai WC, Cass AEG (1992) Bull Electrochem 8:171–180

    CAS  Google Scholar 

  7. Hill HAO (1987) Pure Appl Chem 6:743–748

    Google Scholar 

  8. Frew JE, Hill HAO (1987) Anal Chem 59:933A–944A

    CAS  Google Scholar 

  9. Kraatz H-B (2005) J Inorg Organomet Polym Mater 15:83–106

    CAS  Google Scholar 

  10. Seiwert B, Henneken H, Karst U (2004) J Am Soc Mass Spectrom 15:1727–1736

    CAS  Google Scholar 

  11. Ciszkowska M, Stojek Z (2000) Anal Chem 754A–760A

  12. Luong JHT, Brown RS, Male KB, Cattaneo MV, Zhao S (1995) Trends Biotechnol 13:457–463

    CAS  Google Scholar 

  13. Cais M, Slovin E, Snarsky L (1978) J Organomet Chem 160:223–230

    CAS  Google Scholar 

  14. Deng A-P, Liu HT, Jiang S-J, Huang H-J, Ong C-W (2002) Anal Chim Acta 472:55–61

    CAS  Google Scholar 

  15. Okochi M, Ohta H, Tanaka, T, Matsunaga T (2005) Biotechnol Bioeng 90:14–19

    CAS  Google Scholar 

  16. Kunugi S, Murakami Y, Ikeda K, Itoh N (1992) Int J Biol Macromol 14:210–214

    CAS  Google Scholar 

  17. Cheret P, Brossier P (1986) Res Commun Chem Pathol Pharmacol 54:237–253

    CAS  Google Scholar 

  18. Wilson R, Schiffrin DJ (1996) Anal Chem 68:1254–1257

    CAS  Google Scholar 

  19. Rosman KJ, Taylor PDP (1998) Pure Appl Chem 70:217–235

    Article  CAS  Google Scholar 

  20. Kubab N, Farinotti R, Montes C, Chalom J, Mahuzier G (1989) Analusis 17:559–564

    CAS  Google Scholar 

  21. Shimada K, Orii S, Tanaka M, Nambara T (1986) J Chromatogr 352:329–335

    CAS  Google Scholar 

  22. Van Berkel GJ, Quirke JME, Tigani RA, Dilley AS, Covey TR (1998) Anal Chem 70:1544–1554

    Google Scholar 

  23. Baldoli C, Rigamonti C, Maiorana S, Licandro E, Falciola L, Mussini PR (2006) Chem Eur J 12:4091–4100

    CAS  Google Scholar 

  24. Bandoli C, Oldani C, Licandro E, Ramani P, Valerio A, Ferruti P, Falcialo L, Mussini P (2007) J Organomet Chem 692:1363–1371

    Google Scholar 

  25. Eckert H, Koller M (1990) Z Naturforsch B 45:1709–1714

    CAS  Google Scholar 

  26. Cox RL, Schneider W, Koppang MD (1992) Anal Chim Acta 262:145–159

    CAS  Google Scholar 

  27. Williams CK, Koppang MD (2006) Electroanalysis 21:2121–2127

    Google Scholar 

  28. Kolbe N, Andersson JT (2006) J Agric Food Chem 54:5736–5741

    CAS  Google Scholar 

  29. Rolfes J, Andersson JT (2001) Anal Chem 73:3073–3082

    CAS  Google Scholar 

  30. Rolfes J, Andersson JT (1996) Anal Commun 33:429–432

    CAS  Google Scholar 

  31. Tanner SD, Baranov VI (1999) J Am Soc Mass Spectrom 10:1083–1094

    CAS  Google Scholar 

  32. Diehl G, Karst U (2002) J Chromatogr A 974:103–109

    CAS  Google Scholar 

  33. Diehl G, Liesener A, Karst U (2001) Analyst 126:288–290

    CAS  Google Scholar 

  34. Diehl G, Wasinski FAH, Roberz B, Luftmann H, Schmidt TC, Andersson JT, Karst U (2004) Microchim Acta 146:137–147

    CAS  Google Scholar 

  35. Quirke JME, Hsu Y-L, Van Berkel GJ (2000) J Nat Prod 63:230–237

    CAS  Google Scholar 

  36. Quirke JME, Van Berkel GJ (2001) J Mass Spectrom 36:179–187

    CAS  Google Scholar 

  37. Mukumoto K, Nojima T, Takenaka S (2005) Tetrahedron 61:11705–11715

    CAS  Google Scholar 

  38. Eckert H, Koller M (1990) J Liq Chromatogr 13:3399–3414

    CAS  Google Scholar 

  39. Brazill SA, Kim PH, Kuhr WG (2001) Anal Chem 73:4882–4890

    CAS  Google Scholar 

  40. Brazill SA, Kuhr WG (2002) Anal Chem 74:3421–3428

    CAS  Google Scholar 

  41. Lim T-K, Ohta H, Matsunaga T (2003) Anal Chem 75:2984–2989

    Google Scholar 

  42. Padeste C, Grubelnik A, Tiefenauer L (2000) Biosens Bioelectron 15:431–438

    CAS  Google Scholar 

  43. Lavastre I, Besancon J, Brossiert P, Moise C (1991) Appl Organomet Chem 5:143–149

    CAS  Google Scholar 

  44. Kandimalla VB, Tripathi VS, Ju H (2006) Biomaterials 27:1157–1174

    Google Scholar 

  45. Blonder R, Levi S, Tao G, Ben-Dov I, Willner I (1997) J Am Chem Soc 119:10467–10478

    CAS  Google Scholar 

  46. Blonder R, Ben-Dov I, Dagan A, Willner I, Zisman E (1997) Biosens Bioelectron 12:627–644

    CAS  Google Scholar 

  47. Shimada K, Kawai Y, Oe T, Nambara T (1989) J Liq Chromatogr 12:359–371

    CAS  Google Scholar 

  48. Suzawa T, Ikariyama Y, Aizawa M (1995) Bull Chem Soc Jpn 68:165–171

    CAS  Google Scholar 

  49. Xu C, He P, Fang Y (2000) Anal Chim Acta 411:31–36

    CAS  Google Scholar 

  50. Suzawa T, Ikariyama Y, Aizawa M (1994) Anal Chem 66:3889–3894

    CAS  Google Scholar 

  51. Mosbach M, Schuhmann W (2000) Sens Actuators B 70:145–152

    Google Scholar 

  52. Tanaka S, Yodhida K, Kuramitz H, Sugawara K, Nakamura H (1999) Anal Sci 15:863–867

    CAS  Google Scholar 

  53. Lim T-K, Matsunaga T (2001) Biosens Bioelectron 16:1063–1069

    CAS  Google Scholar 

  54. Wang J, Ibanez A, Chatrathi MP (2002) Electrophoresis 23:3744–3749

    CAS  Google Scholar 

  55. Choi MJ, Kim SY, Choi J, Paeng IR (1999) Microchem J 63:92–99

    CAS  Google Scholar 

  56. Degani Y, Heller A (1988) J Am Chem Soc 110:2615–2620

    CAS  Google Scholar 

  57. Akram M, Stuart MC, Wong DKY (2006) Electroanalysis 18:237–246

    CAS  Google Scholar 

  58. Tranchant I, Herve A-C, Carlisle S, Lowe P, Slevin CJ, Forssten C, Dileen J, Wiliams DE, Tabor AB, Hailes HC (2006) Bioconjug Chem 17:1256–1264

    CAS  Google Scholar 

  59. Kossek S, Padeste C, Tiefenauer L (1996) J Mol Recognit 9:485–487

    CAS  Google Scholar 

  60. Ihara T, Nakayama M, Murata M, Nakano K, Maeda M (1997) Chem Commun 1609–1610

  61. Shimada K, Sakayori C, Nambara T (1987) J Liq Chromatogr 10:2177–2187

    CAS  Google Scholar 

  62. Shimada K, Nagashima E, Orii S, Nambara T (1987) J Pharm Biomed Anal 5:361–368

    CAS  Google Scholar 

  63. Shimada K, Haniuda E, Oe T, Nambara T (1987) J Liq Chromatogr 10:3161–3172

    CAS  Google Scholar 

  64. Shimada K, Xie FM, Niwa T, Wakasawa T, Nambara T (1987) J Chromatogr 400:215–221

    CAS  Google Scholar 

  65. Mansouri SE, Tod M, Leclercq M, Porthault M, Chalom J (1994) Anal Chim Acta 293:245–250

    Google Scholar 

  66. Sato K, Kodama D, Anzai J (2006) Anal Bioanal Chem 386:1899–1904

    CAS  Google Scholar 

  67. Gamoh K, Sawamoto H, Kakatsuto S, Watabe Y, Arimoto H (1990) J Chromatogr 515:227–231

    CAS  Google Scholar 

  68. Uden PC, Yoo Y, Wang T, Cheng Z (1998) J Chromatogr A 468:319–328

    Google Scholar 

  69. Brooks CJW, Cole WJ (1986) J Chromatogr 362:113–116

    CAS  Google Scholar 

  70. Brooks CJW, Cole WJ (1987) J Chromatogr 399:207–221

    CAS  Google Scholar 

  71. Williams JD, Young MK (2000) Rapid Commun Mass Spectrom 14:2083–2091

    CAS  Google Scholar 

  72. Williams JD, Young MK (2002) US Patent 2001-921988

  73. Murao N, Ishigai M, Sekiguchi N, Takahashi T, Aso Y (2005) Anal Biochem 346:158–166

    CAS  Google Scholar 

  74. Ishigai M, Murao N, Sekiguchi N, Takahashi T (2004) Patent WO2004002996

  75. Mukumoto K, Noijma T, Sato S, Waki M, Takenaka S (2007) Anal Sci 23:115–119

    Google Scholar 

  76. Shimada K, Oe T, Nambara T (1987) J Chromatogr 419:17–25

    CAS  Google Scholar 

  77. Haquette P, Salmain M, Svedlung K, Martel A, Rudolf B, Zakrzewski J, Cordier S, Roisnel T, Fosse C, Jaouen G (2006) Chem Bio Chem 8:224–231

    Article  CAS  Google Scholar 

  78. Seiwert B, Hayen H, Karst U (2007) J Am Soc Mass Spectrom (in press)

  79. Seiwert B, Karst U (2007) Anal Bioanal Chem 388:1633–1642

    CAS  Google Scholar 

  80. Di Gleria K, Nickerson DP, Hill AO, Wong L-L, Fülöp V (1998) J Am Chem Soc 120:46–52

    Google Scholar 

  81. Katayama T, Sakakihara S, Maeda M (2001) Anal Sci 17:17–19

    CAS  Google Scholar 

  82. Lo KK-W, Lau JS-Y, Ng DC-M, Zhu N (2002) J Chem Soc Dalton Trans 1753–1756

  83. Lo KK-W, Ng DC-M, Lau JS-Y, Wu RS-S, Lam PK-S (2003) New J Chem 27:274–279

    CAS  Google Scholar 

  84. Bond AM, McLennan EA, Stojanovic RS, Thomas FG (1987) Anal Chem 59:2853–2860

    CAS  Google Scholar 

  85. Chen G, Wang Y, Yang P (2005) Microchim Acta 150:239–245

    CAS  Google Scholar 

  86. Di Gleria K, Halliwell CM, Jacob C, Hill HAO (1997) FEBS Lett 400:155–157

    Google Scholar 

  87. Heller A (1990) Acc Chem Res 23:128–134

    CAS  Google Scholar 

  88. Li D, Gill R, Freeman R, Willner I (2006) Chem Commun 5027–5029

  89. Nakayama M, Ihara T, Nakano K, Maeda M (2007) Talanta 56:857–866

    Google Scholar 

  90. Patolsky F, Weizmann Y, Willner I (2002) J Am Chem Soc 124:770–772

    CAS  Google Scholar 

  91. Gibbs JM, Park SJ, Anderson DR, Watson KJ, Mirkin CA, Nguyen ST (2005) J Am Chem Soc 127:1170–1178

    CAS  Google Scholar 

  92. Baca AJ, Zhou F, Wang J, Li J, Wang J, Chikneyan ZS (2004) Electroanalysis 16:73–80

    CAS  Google Scholar 

  93. Wang J, Li J, Baca AJ, Hu J, Zhou F, Yan W, Pang D-W (2003) Anal Chem 75:3941–3945

    CAS  Google Scholar 

  94. Jimenez OA, Chikneyan S, Baca AJ, Wang H, Zhou F (2005) Environ Sci Technol 39:1208–1213

    Google Scholar 

  95. Mearns FJ, Wong ELS, Short K, Hibbert DB, Gooding JJ (2006) Electroanalysis 19–20:1971–1981

    Google Scholar 

  96. Anne A, Bouchardon A, Moiroux J (2003) J Am Chem Soc 125:1112–1113

    CAS  Google Scholar 

  97. Fan C, Plaxo KW, Heeger AJ (2003) Proc Natl Acad Sci USA 100:9134–9137

    CAS  Google Scholar 

  98. Radi A-E, Sanchez JLA, Baldrich E, O’Sullivan CK (2006) J Am Chem Soc 28:117–124

    Google Scholar 

  99. Liu G, Wang J, Wunschel DS, Lin Y (2006) J Am Chem Soc 128:12382–12383

    CAS  Google Scholar 

  100. Hiller SC, Flower SE, Frost CG, Jenkins A, Toby A, Keay R, Braven H, Clarkson J (2004) Electrochem Commun 6:1227–1232

    Google Scholar 

  101. Zauner G, Wang Y, Laversa-Curto M, MacDonald A, Mayes AG, Bowater RP, Butt JN (2005) Analyst 130:345–349

    CAS  Google Scholar 

  102. Sagi A, Rishpon J, Shabat D (2006) Anal Chem 78:1459–1461

    CAS  Google Scholar 

  103. Ghindilis AL, Makower A, Scheller FW (1995) Anal Lett 28:1–11

    CAS  Google Scholar 

  104. Mosbach M, Laurell T, Nilsson J, Csöregi E, Schuhmann W (2001) Biosens Bioelectron 16:611–620

    CAS  Google Scholar 

  105. Shimada K, Oe T (1991) Yakugaku Zasshi 111:225–233

    CAS  Google Scholar 

  106. Tanaka M, Shimada K, Nambara T (1984) J Chromatogr 292:410–411

    CAS  Google Scholar 

  107. Takenaka S, Uto Y, Kondo H, Ihara T, Takagi M (1994) Anal Biochem 218:436–443

    CAS  Google Scholar 

  108. Ihara T, Maruo Y, Takenaka S, Takagi M (1996) Nucleic Acids Res 24:4273–4280

    CAS  Google Scholar 

  109. Wlassoff WA, King GC (2002) Nucleic Acids Res 30:e58

    Google Scholar 

  110. Uto Y, Kondo H, Abe M, Suzuki T, Takenaka S (1997) Anal Sci 13:209–212

    CAS  Google Scholar 

  111. Uto Y, Kondo H, Abe M, Suzuki T, Takenaka S (1997) Anal Biochem 250:122–124

    CAS  Google Scholar 

  112. Luckey JA, Smith LM (1993) Anal Chem 65:2841–2850

    CAS  Google Scholar 

  113. Wooley AT, Lao K, Glazer AN, Mathies RA (1998) Anal Chem 70:684–688

    Google Scholar 

  114. Brazill SA, Hebert NE, Kuhr WG (2003) Electrophoresis 24:2749–2757

    CAS  Google Scholar 

  115. Hebert NE, Brazill SA (2003) Lab Chip 3:241–247

    CAS  Google Scholar 

  116. Lim T-K, Imai S, Takeyama H, Matsunaga T (2001) Chem Sens 17:94–96

    CAS  Google Scholar 

  117. Lim T-K, Nakamura N, Ikehata M, Matsunaga T (2000) Electrochemistry 68:872–874

    CAS  Google Scholar 

  118. Tanaka T, Tsukube S, Izawa K, Okochi M, Lim T-K, Watanabe S, Harada M, Matsunaga T (2007) Biosens Bioelectron 22:2051–2056

    CAS  Google Scholar 

  119. Gale LA, Sale LA, Benoit L, Degrand C (1995) Anal Chem 67:1245–1253

    Google Scholar 

  120. Limoges B, Degrand C (1996) Anal Chem 68:4141–4148

    CAS  Google Scholar 

  121. Bordes A-L, Schöllhorn B, Limoges B, Degrand C (1999) Talanta 48:201–208

    CAS  Google Scholar 

  122. Cao W, Ferrance JP, Demas J, Landers JP (2006) J Am Chem Soc 128:7572–7578

    CAS  Google Scholar 

  123. Xu X, Nolan SP, Cole RB (1994) Anal Chem 66:119–125

    CAS  Google Scholar 

  124. Van Berkel GJ, Kertesz V, Ford MJ, Granger MC (2004) J Am Soc Mass Spectrom 15:1755–1766

    Google Scholar 

  125. Van Berkel GJ, Quirke JME, Adams CL (2000) Rapid Commun Mass Spectrom 14:849–858

    Google Scholar 

  126. Williams JD, Shiuan C, Young MK (2001) Rapid Commun Mass Spectrom 15:182–186

    CAS  Google Scholar 

  127. Seiwert B, Karst U (2007) Anal Chem 79:7131–7138

    CAS  Google Scholar 

  128. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fuijmoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    CAS  Google Scholar 

  129. Hagen DF, Marhevka JS, Haddad LC (1985) Spectrochim Acta Part B 40:335–347

    Google Scholar 

  130. Andersson JT (2002) Anal Bioanal Chem 373:344–355

    CAS  Google Scholar 

  131. Fery-Frougues S, Delavaux-Nicot B (2000) J Photochem Photobiol B 132:137–159

    Google Scholar 

  132. Wilson R, Schiffrin DJ (1998) J Electroanal Chem 448:125–130

    CAS  Google Scholar 

  133. Luong JHT, Male KB, Zhao S (1993) Anal Biochem 212:269–276

    CAS  Google Scholar 

  134. Badia A, Thai NHH, English AM, Mikkelsen SR, Patterson RT (1992) Anal Chim Acta 262:87–90

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Bonn, Germany) and the Fonds der Chemischen Industrie (Frankfurt, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiwert, B., Karst, U. Ferrocene-based derivatization in analytical chemistry. Anal Bioanal Chem 390, 181–200 (2008). https://doi.org/10.1007/s00216-007-1639-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1639-7

Keywords

Navigation