Skip to main content
Log in

Determination of biogenic amines in food samples using derivatization followed by liquid chromatography/mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A liquid chromatography (LC)/mass spectrometry method was developed for the determination of selected biogenic amines in various fish and other food samples. It is based on a precolumn derivatization of the amines with succinimidylferrocenyl propionate under formation of the respective amides and their reversed-phase liquid-chromatographic separation with subsequent electrospray ionization mass-spectrometric detection. Deuterated putescine, cadaverine, and histamine are added prior to the derivatization as internal standards that are coeluted, thus allowing excellent reproducibility of the analysis to be achieved. Depending on the analyte, the limits of detection were between 1.2 and 19.0 mg/kg, covering between 2 and 3 decades of linearity. The limit of detection and the linear range for histamine are suitable for the surveillance of the only defined European threshold for biogenic amines in fish samples. Compared with the established ortho-phthalaldehyde (OPA)/LC/fluorescence method, the newly developed method allows an unambiguous identification of the biogenic amines by their mass spectra in addition to only retention times, a fivefold acceleration of the separation, and independency from the sample matrix owing to the isotope-labeled internal standards. Various fish, calamari, and salami samples were successfully analyzed with the new method and validated with an independent OPA/LC/fluorescence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brink B, Damink C, Joosten HMLJ, Huis in’t Veld JHJ (1990) Int J Food Microbiol 11:73–84

    Article  Google Scholar 

  2. Corbin LJ, March HB, Peters GA (1989) Plant Physiol 96:434–439

    Article  Google Scholar 

  3. Chem RF, Scott C, Trepman E (1979) Biochim Biophys Acta 576:440–445

    Google Scholar 

  4. Lindroth P, Mopper K (1979) Anal Chem 5:1667–1674

    Article  Google Scholar 

  5. Toriba A, Adzuma K, Santa T, Imai K (2000) Anal Chem 72:732–739

    Article  CAS  Google Scholar 

  6. Romero R, Bagur MG, Sánchez-Vinas D (2000) Chromatographia 51:404–407

    Article  CAS  Google Scholar 

  7. Moret S, Bortolomeozzi R, Lercker G (1992) J Chromatogr 591:175–180

    Article  CAS  Google Scholar 

  8. Hwang DF, Chang SH, Shiua CY, Chai TJ (1997) J Chromatogr B 693:23–30

    Article  CAS  Google Scholar 

  9. Bockhardt A, Krause I, Klostermeyer H (1996) Z Lebensm Unters Forsch 203:65–70

    Article  CAS  Google Scholar 

  10. Kirschbaum J, Rebscher K, Brückner H (2000) J Chromatogr A 881:517–530

    Article  CAS  Google Scholar 

  11. You J, Zhang Y (2002) Chromatographia 56:43–50

    Article  CAS  Google Scholar 

  12. Li J-S, Wang H, Huang K-L, Zhang H-S (2006) Anal Chim Acta 575:255–261

    Article  CAS  Google Scholar 

  13. Deng Y-H, Zhang H-S, Du X-L, Wang H (2008) J Sep Sci 31:990–998

    Article  CAS  Google Scholar 

  14. Shimada K, Oe T, Tanaka M, Nambara T (1989) J Chromatogr 487:247–255

    Article  CAS  Google Scholar 

  15. Shimada K, Kawai Y, Oe T, Nambara T (1989) J Chromatogr 12:359–371

    CAS  Google Scholar 

  16. Eckert H, Koller MZ (1989) Z Naturforsch B 45:1709–1714

    Google Scholar 

  17. Jacobson KA, Marshall T, Mine K, Kirk KL, Linnoila M (1985) FEBS 188:307–311

    Article  CAS  Google Scholar 

  18. Van Berkel GJ, Kertesz V, Ford MJ, Granger MC (2004) J Am Soc Mass Spectrom 15:1755–1766

    Article  CAS  Google Scholar 

  19. Diehl G, Karst U (2002) J Chromatogr A 974:103–109

    Article  CAS  Google Scholar 

  20. Diehl G, Wasinski FAH, Roberz B, Luftmann H, Schmidt TC, Andersson JT, Karst U (2004) Microchim Acta 146:137–147

    Article  CAS  Google Scholar 

  21. Diehl G, Karst U (2002) J Chromatogr A 974:103–109

    Article  CAS  Google Scholar 

  22. Seiwert B, Henneken H, Karst U (2004) J Am Soc Mass Spectrom 15:1727–1736

    Article  CAS  Google Scholar 

  23. Cox RL, Schneider TW, Koppang MD (1992) Anal Chim Acta 262:145–159

    Article  CAS  Google Scholar 

  24. Hayen H, Karst U (2003) J Chromatogr A 1000:549–565

    Article  CAS  Google Scholar 

  25. Tanaka M, Shimada K, Nambara T (1984) J Chromatogr 292:410–411

    Article  CAS  Google Scholar 

  26. Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin (1999) Amtliche Sammlung von Untersuchungsverfahren nach § 35 LMBG. L 10.00–5. Beuth, Berlin

  27. Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin (1982) Amtliche Sammlung von Untersuchungsverfahren nach § 35 LMBG. L 10.00–1. Beuth, Berlin

Download references

Acknowledgements

Partial financial support by the Deutsche Forschungsgemeinschaft (Bonn, Germany) and the Fonds der Chemischen Industrie (Frankfurt, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomke, S., Seiwert, B., Dudek, L. et al. Determination of biogenic amines in food samples using derivatization followed by liquid chromatography/mass spectrometry. Anal Bioanal Chem 393, 247–256 (2009). https://doi.org/10.1007/s00216-008-2420-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2420-2

Keywords

Navigation