Skip to main content
Log in

Application of the avidin–biotin interaction to immobilize DNA in the development of electrochemical impedance genosensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Impedance spectroscopy is a rapidly developing technique for the transduction of biosensing events at the surface of an electrode. The immobilization of biomaterial as DNA strands on the electrode surface alters the capacitance and the interfacial electron transfer resistance of the conductive electrodes. The impedimetric technique is an effective method of probing modifications to these interfacial properties, thus allowing the differentiation of hybridization events. In this work, an avidin bulk-modified graphite–epoxy biocomposite (Av-GEB) was employed to immobilize biotinylated oligonucleotides as well as double-stranded DNA onto the electrode surface. Impedance spectra were recorded to detect the change in the interfacial electron transfer resistance (R et) of the redox marker ferrocyanide/ferricyanide at a polarization potential of +0.17 V. The sensitivity of the technique and the good reproducibility of the results obtained with it confirm the validity of this method based on a universal affinity biocomposite platform coupled with the impedimetric technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7a, b

Similar content being viewed by others

References

  1. Guttman A (1999) Anal Chem 71:3598–3602

    Article  CAS  Google Scholar 

  2. Yang M, Mc Govern ME, Thompson M (1997) Anal Chim Acta 346:259–275

    CAS  Google Scholar 

  3. Turner SJ, Lewis GD, Bellamy AR (1997) Wat Sci Technol 35:337–342

    Article  CAS  Google Scholar 

  4. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M (1997) Anal Chim Acta 347:1–8

    Article  CAS  Google Scholar 

  5. Gilbert W, Maxam A (1973) Proc Natl Acad Sci USA 70:3581–3585

    Google Scholar 

  6. Hood L (1986) Nature 321:674–679

    Article  Google Scholar 

  7. Hashimoto K, Ito K, Ishimori Y (1994) Anal Chim Acta 286:219–224

    Article  CAS  Google Scholar 

  8. Millan KM, Saraullo A, Mikkelsen SR (1994) Anal Chem 66:2943–2948

    Article  CAS  Google Scholar 

  9. Pividori MI, Merkoçi A, Alegret S (2003) Biosens Bioelectron 19:473–484

    Google Scholar 

  10. Xu C, Cai H, Xu Q, He P, Fang Y (2001) Fresenius J Anal Chem 369:428–432

    Article  CAS  Google Scholar 

  11. Chiti G, Marrazza G, Mascini M (2001) Anal Chim Acta 427:155–164

    Article  CAS  Google Scholar 

  12. Wang J, Cai X, Jonsson C, Balakrishnan M (1996) Electroanal 8:20–24

    Article  CAS  Google Scholar 

  13. Erdem A, Pividori MI, Lermo A, Bonanni A, del Valle M, Alegret S (2006) Sens Actuat B 114:591–598

    Google Scholar 

  14. MacDonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  15. Bard AJ, Faulkner LR (2000) Electrochemical methods. Wiley, New York

    Google Scholar 

  16. Katz E, Willner I (2003) Electroanal 15:927–929

    Google Scholar 

  17. Breggen C, Bjarnason B, Johansson G (2000) Electroanal 13(3):173–180

    Google Scholar 

  18. Gabrielli C (1990) Use and application of electrochemical impedance techniques. Solartron Analytical, Farnborough, UK

  19. Patolsky F, Filanovsky B, Katz E, Willner I (1998) J Phys Chem B 102:10359–10367

    Article  CAS  Google Scholar 

  20. Willner I, Willner B (1999) Biotechnol Prog 15:991–1002

    Article  CAS  Google Scholar 

  21. Farace G, Lillie G, Hianik T, Payne P, Vadgama P (2002) Bioelectrochem 55:1–3

    Article  CAS  Google Scholar 

  22. Huang H, Liu Z, Yang X (2006) Anal Biochem 356:208–214

    Article  CAS  Google Scholar 

  23. Tlili C, Korri-Youssoufi H, Ponsonnet L, Martelet C, Jaffrezic-Renault NJ (2005) Talanta 68:131–137

    Article  CAS  Google Scholar 

  24. Peng H, Soeller C, Vigar NA, Caprio V, Travas-Sejdic J (2007) Biosens Bioelectron 22:1868–1873

    Google Scholar 

  25. Xu Y, Jiang Y, Cai H, He P-G, Fang Y-Z (2004) Anal Chim Acta 516:19–27

    Article  CAS  Google Scholar 

  26. Kharitonov AB, Alfonta L, Katz E, Willner I (2000) J Electroanal Chem 487:133–141

    Article  CAS  Google Scholar 

  27. Saum AGE, Cumming RH, Rowell FJ (1998) Biosens Bioelectron 13:511–518

    Google Scholar 

  28. Mansfield F, Han LT, Lee CC, Chen C, Zhang G, Xiao H (1997) Corrosion Sci 39:255–279

    Article  Google Scholar 

  29. Rout TK (2007) Corrosion Sci 49:794–817

    Article  CAS  Google Scholar 

  30. Daniels GS, Pourmand N (2007) Electroanal 19:1239–1257

    Article  CAS  Google Scholar 

  31. Berggren C, Stalhandske P, Brundell J, Johansson J (1999) Electroanal 11:156–160

    Article  CAS  Google Scholar 

  32. Wei F, Sun B, Guo Y, Zhao XS (2003) Biosens Bioelectron 18:1157–1163

    Google Scholar 

  33. Moreno-Hagelsieb L, Foultier B, Laurent G, Pampin R, Remacle J, Raskin JP, Flandre D (2007) Biosens Bioelectron 22:2199–2207

    Google Scholar 

  34. Estrela P, Migliorato P, Takiguchi H, Fukushima H, Nebashi S (2005) Biosens Bioelectron 20:1580–1586

    Google Scholar 

  35. Oliveira Brett AM, Chiorcea Paquim AM, Diculescu V, Oretskaya TS (2005) Bioelectrochem 67:181–190

    Article  CAS  Google Scholar 

  36. Berney H, West J, Haefele E, Alderman J, Lane W, Collins JK (2000) Sens Actuat B 68:100–108

    Google Scholar 

  37. Strašák L, Dvošák J, Hasoň S, Vetterl V (2000) Bioelectrochem 56:37–41

    Article  Google Scholar 

  38. Xu Y, Cai H, He P-G, Fang Y-Z (2004) Electroanal 16:150–155

    Article  CAS  Google Scholar 

  39. Bonanni A, Esplandiu MJ, Pividori MI, Alegret S, del Valle M (2006) Anal Bioanal Chem 385:1195–1201

    Article  CAS  Google Scholar 

  40. Peng H, Soeller C, Vigar N, Kilmartin PA, Cannell MB, Bowmaker GA, Cooney RP, Travas-Sejdic J (2005) Biosens Bioelectron 20:1821–1828

    Google Scholar 

  41. Zhi Z, Drazan V, Wolfbeis OS, Mirsky VM (2006) Bioelectrochem 68:1–6

    Article  CAS  Google Scholar 

  42. Ito T, Hosokawa K, Maeda M (2007) Biosens Bioelectron 22:1816–1819

    Google Scholar 

  43. Dharuman V, Grunwald T, Nebling E, Albers J, Blohm L, Hintsche R (2005) Biosens Bioelectron 21:645–654

    Google Scholar 

  44. Lillis B, Manning M, Hurley E, Berney H, Duane R, Mathewson A, Sheehan MM (2007) Biosens Bioelectron 22:1289–1295

    Google Scholar 

  45. Peng H, Soeller C, Cannell MB, Bowmaker GA, Cooney RP, Travas-Sejdic J (2006) Biosens Bioelectron 21:1727–1736

    Google Scholar 

  46. Akagi Y, Makimura M, Yokoyama Y, Fukazawa M, Fujiki S, Kadosaki M, Tanino K (2006) Electrochim Acta 51:6367–6372

    Article  CAS  Google Scholar 

  47. Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I (2001) Biosens Bioelectron 16:675–687

    Google Scholar 

  48. Davis F, Nabok AV, Higson SPJ (2005) Biosens Bioelectron 20:1531–1538

    Google Scholar 

  49. Yang J, Yang T, Feng Y, Jiao K (2007) Anal Biochem 365:24–30

    Article  CAS  Google Scholar 

  50. Beaucage L (2001) Curr Med Chem 8:1213–1244

    CAS  Google Scholar 

  51. Azek F, Grossiord C, Joannes M, Limoges B, Brossier P (2000) Anal Biochem 284:107–113

    Article  CAS  Google Scholar 

  52. Chiorcea Paquim AM, Oretskaya TS, Oliveira Brett AM (2006) Biophys Chem 121:131–141

    Google Scholar 

  53. Millan KM, Mikkelsen SK (1993) Anal Chem 65:2317–2323

    Article  CAS  Google Scholar 

  54. Sun X, He P, Liu S, Ye L, Fang Y (1998) Talanta 47:487–495

    Article  CAS  Google Scholar 

  55. Moser I, Schalkhammer T, Pittner R, Urban G (1997) Biosens Bioelectron 12:729–737

    Google Scholar 

  56. Piro B, Accoun J, Pham MC, Tran LD, Rubin A, Perrot H, Gabrielli C (2005) J Electroanal Chem 577:155–165

    Article  CAS  Google Scholar 

  57. Travas-Sejdic J, Peng H, Kilmartin PA, Cannel MB, Bowmaker GA, Cooney RP, Soeller C (2005) Synth Met 152:37–40

    Google Scholar 

  58. Wu J, Zou Y, Li X, Liu H, Shen G, Yu R (2005) Sens Actuat B 104:43–49

    Article  Google Scholar 

  59. Zu N, Chang Z, He P, Fang Y (2006) Electrochim Acta 51:3758–3762

    Article  Google Scholar 

  60. Williams E, Pividori MI, Merkoçi A, Forster RJ, Alegret S (2003) Biosens Bioelectron 19:165–175

    Article  CAS  Google Scholar 

  61. Kim YS, Yung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Biosens Bioelectron 22:2525–2531

    Article  CAS  Google Scholar 

  62. Tombelli S, Minunni M, Santucci A, Spiriti MM, Mascini M (2006) Talanta 68:806–812

    Article  CAS  Google Scholar 

  63. González-García MB, Fernández-Sánchez C, Costa-García A (2000) Biosens Bioelectron 15:315–321

    Google Scholar 

  64. Díaz-González M, González-García MB, Costa-García A (2006) Sens Actuat B 113:1005–1011

    Article  Google Scholar 

  65. Cespedes F, Martinez E, Alegret F (1996) TrAC 15:296–304

    CAS  Google Scholar 

  66. Pividori MI, Merkoçi A, Alegret S (2005) Anal Lett 38:2541–2565

    Article  Google Scholar 

  67. Cespedes F, Alegret S (2000) TrAC 19:276–285

    CAS  Google Scholar 

  68. Zacco E, Pividori MI, Llopis X, del Valle M, Alegret S (2004) J Immunol Met 286:35–46

    Article  CAS  Google Scholar 

  69. Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  70. Zacco E, Pividori MI, Alegret S (2006) Biosens Bioelectron 21:1291–1301

    Google Scholar 

  71. Alegret S (1996) Analyst 121:1751–1758

    Article  CAS  Google Scholar 

  72. Pividori MI, Merkoçi A, Alegret S (2001) Analyst 126:1551–1557

    Article  CAS  Google Scholar 

  73. Lam S, Roth JR (1983) Cell 34:951–960

    Article  CAS  Google Scholar 

  74. Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori MI (2007) Biosens Bioelectron 22:2010–2017

  75. Erdem A, Pividori MI, del Valle M, Alegret S (2004) J Electroanal Chem 567:29–37

    Article  CAS  Google Scholar 

  76. Gibert I, Barbe J, Casadesus J (1990) J Gen Microbiol 136:2555–2560

    CAS  Google Scholar 

  77. Bendedouch D, Chen S-H (1983) J Phys Chem 87:1473–1477

    Article  CAS  Google Scholar 

  78. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439–446

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Ministry of Science and Technology (MCyT, Madrid, Spain) through project CTQ2004-08134, and by the Department of Innovation, Universities and Enterprise (DIUE) from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonanni, A., Pividori, M.I. & del Valle, M. Application of the avidin–biotin interaction to immobilize DNA in the development of electrochemical impedance genosensors. Anal Bioanal Chem 389, 851–861 (2007). https://doi.org/10.1007/s00216-007-1490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1490-x

Keywords

Navigation