Skip to main content
Log in

Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0 × 10−14 and 5.0 × 10−9 M concentration range, and the limit of detection is 2.2 × 10−15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.

We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui HF, Cheng L, Zhang J, Liu RH, Zhang C, Fan H (2014) An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Biosens Bioelectron 56:124

    Article  CAS  Google Scholar 

  2. Jampasa S, Wonsawat W, Rodthongkum N, Siangproh W, Yanatatsaneejit P, Vilaivan T, Chailapakul O (2014) Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens Bioelectron 54:428

    Article  CAS  Google Scholar 

  3. Sui J, Zhang LJ, Peng H (2013) Label-free DNAsensor construction using self-assembled poly (o-methoxyaniline) hollow nanospheres. Eur Polym J 49:139

    Article  CAS  Google Scholar 

  4. Niu SY, Sun J, Nan CC, Lin JH (2013) Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt complex as indicator based on the electrode modified by gold nanoparticles and grapheme. Sens Actuat B 176:58

    Article  CAS  Google Scholar 

  5. Lee HU, Jung DU, Lee JH, Song YS, Park C, Kim SW (2013) Detection of glyphosate by quantitative analysis of fluorescence and single DNAusing DNA-labeled fluorescent magnetic core–shell nanoparticles. Sens Actuat B 177:879

    Article  CAS  Google Scholar 

  6. Liu BX, Hu JP, Foord JS (2012) Electrochemical detection of DNA hybridization by a zirconia modified diamond electrode. Electrochem Commun 19:46

    Article  Google Scholar 

  7. Azizi SN, Ranjbar S, Raoof JB, Hamidi-Asl E (2013) Preparation of Ag/NaA zeolite modified carbon paste electrode as a DNA biosensor. Sens Actuat B 181:319

    Article  CAS  Google Scholar 

  8. Hu YW, Hua SC, Li FH, Jiang YY, Bai XX, Li D, Niu L (2011) Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing. Biosens Bioelectron 26:4355

    Article  CAS  Google Scholar 

  9. Meng XM, Xu MR, Zhu JY, Yin HS, Ai SY (2012) Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta 71:233

    Article  CAS  Google Scholar 

  10. Ke Y, Zeng Y, Pu XL, Wu X, Li LF, Zhu ZH, Yu Y (2012) Electrochemistry and electrocatalysis of myoglobin on carbon coated Fe3O4 nanospindle modified carbon ionic liquid electrode. RSC Adv 2:5676

    Article  CAS  Google Scholar 

  11. Huang KJ, Liu YJ, Wang HB, Wang YY (2014) A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim Acta 118:130

    Article  CAS  Google Scholar 

  12. Zhu ZH, Li X, Zeng Y, Sun W (2010) Ordered mesoporous carbon modified carbon ionic liquid electrode for the electrochemical detection of double-stranded DNA. Biosens Bioelectron 25:2313

    Article  CAS  Google Scholar 

  13. Niu SY, Sun J, Nan CC, Lin JH (2013) Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt complex as indicator based on the electrode modified by gold nanoparticles and grapheme. Sens Actuat B 176:58

    Article  CAS  Google Scholar 

  14. Yin Z, Sun S, Salim T, Wu S, Huang X, He Q, Lam YM, Zhang H (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263

    Article  CAS  Google Scholar 

  15. Ghosh S, Sarker BK, Chunder A, Zhai L, Khondaker SI (2010) Position dependent photodetector from large area reduced graphene oxide thin films. Appl Phys Lett 96:163109

    Article  Google Scholar 

  16. Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720

    Article  CAS  Google Scholar 

  17. Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuat B 178:671

    Article  CAS  Google Scholar 

  18. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of grapheme. Angew Chem Int Edit 49:4059

    Article  Google Scholar 

  19. Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Source. 229:72

  20. Yin ZY, Li H, Li H, Jiang L, Shi YM, Sun YH, Lu G, Zhang Q, Chen XD, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74

    Article  CAS  Google Scholar 

  21. Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris P, Steiner M (2013) Electroluminescence in single layer MoS2. Nano Lett 13:1416

    CAS  Google Scholar 

  22. Wang H, Yu LL, Lee YH, Shi YM, Hsu A, Chin ML, Li LJ, Dubey MD, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674

    Article  CAS  Google Scholar 

  23. Wang GX, Bao WJ, Wang J, Lu QQ, Xia XH (2013) Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochem Commun 35:146

    Article  Google Scholar 

  24. Splendiani A, Sun L, Zhang YB, Li TS, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271

    Article  CAS  Google Scholar 

  25. Jacopo B, Duncan TLA, Andras K (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11:5148

    Article  Google Scholar 

  26. Scharf TW, Goeke RS, Kotula PG, Prasad SV (2013) Synthesis of Au-MoS2 nanocomposites: thermal and friction-induced changes to the structure. ACS Appl Mater Inter 5:11762

    Article  CAS  Google Scholar 

  27. Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance. Int J Hydrogen Energ 38:14027

    Article  CAS  Google Scholar 

  28. Huang KJ, Li J, Liu YM, Cao XY, Yu S, Yu M (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchim Acta 177:419

    Article  CAS  Google Scholar 

  29. Dong HF, Zhu Z, Ju HX, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles–graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33:228

    Article  CAS  Google Scholar 

  30. Cheng W, Ding L, Lei JP, Ding SJ, Ju HX (2008) Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem 80:3867

    Article  CAS  Google Scholar 

  31. Wei X, Hao Q, Zhou Q, Wu J, Lu L, Wang X, Yang X (2008) Interaction between promethazine hydrochloride and DNA and its application in electrochemical detection of DNA hybridization. Electrochim Acta 53:7338

    Article  CAS  Google Scholar 

  32. Zhang W, Yang T, Zhuang X, Guo Z, Jiao K (2009) An ionic liquid supported CeO2 nanoshuttles–carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens Bioelectron 24:2417

    Article  CAS  Google Scholar 

  33. Zhu NN, Zhang AP, Wang QJ, He PG, Fang YZ (2004) Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal Chim Acta 510:163

    Article  CAS  Google Scholar 

  34. Wang QX, Gao F, Zhang X, Zhang B, Li SX, Hu ZS, Gao F (2012) Electrochemical characterization and DNA sensing application of a sphere-like CeO2–ZrO2 and chitosan nanocomposite formed on a gold electrode by one-step electrodeposition. Electrochim Acta 62:250

  35. Feng KJ, Yang YH, Wang ZJ, Jiang JH, Shen GL, Yu RQ (2006) A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 70:561

    Article  CAS  Google Scholar 

  36. Chen J, Zhang J, Zhuang Q, Chen J, Lin X (2007) Studies of the interaction of 2-nitroacridone with DNA and determination of DNA. Electroanal 19:1765

    Article  CAS  Google Scholar 

  37. Li GJ, Liu LH, Qi XW, Guo YQ, Sun W, Li XL (2012) Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA. Electrochim Acta 63:312

    Article  CAS  Google Scholar 

  38. Munge B, Liu GD, Collins G, Wang J (2005) Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal Chem 77:4662

    Article  CAS  Google Scholar 

  39. Wang JX, Zhu X, Tu QY, Guo Q, Zarui CS, Momand J, Sun XZ, Zhou FM (2008) Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Anal Chem 80:769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for Science & Technology Innovation Talents in Universities of Henan Province (HASTIT), China (Grant No. 2011HASTIT017), Innovation Scientists and Technicians Troop Construction Projects of Zhengzhou City, China (Grant No. 131PLJRC652), and Plan for Scientific Innovation Talent of Henan University of Technology, China (Grant No. 2012CXRC09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X. Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181, 1133–1141 (2014). https://doi.org/10.1007/s00604-014-1301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1301-y

Keywords

Navigation