Skip to main content
Log in

New noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a new fluorescence microplate screening assay for evaluating scavenging activity against singlet oxygen (1O2) was implemented. The chemical generation of 1O2 was promoted using the thermodissociable endoperoxide of disodium 3,3′-(1,4-naphthalene)bispropionate (NDPO2). The detection of 1O2 was achieved using dihydrorhodamine 123 (DHR), a nonfluorescent molecule that is oxidizable to the fluorescent form rhodamine 123 (RH). The combined use of a 1O2-selective generator and a highly sensitive probe (DHR) was then successfully applied to perform a screening assay of the 1O2 scavenging activities of ascorbic acid, penicillamine, cysteine, N-acetylcysteine (NAC), methionine, reduced glutathione (GSH), dihydrolipoic acid, lipoic acid, and sodium azide. All of these antioxidants exhibited concentration-dependent 1O2 scavenging capacities. They could be ranked according to observed activity: ascorbic acid> cysteine> penicillamine> dihydrolipoic acid > GSH> NAC> sodium azide> lipoic acid (IC50 values of 3.0 ± 0.2, 8.0 ± 0.7, 10.9 ± 0.8, 25.2 ± 4.5, 57.4 ± 5.9, 138 ± 13, 1124 ± 128, 2775 ± 359 μM, mean±SEM, respectively) > methionine (35% of scavenging effect at 10 mM). In conclusion, the use of NDPO2 as a selective generator for 1O2 and its fluorescence detection by the highly sensitive probe DHR is shown to be a reliable and resourceful analytical alternative means to implement a microplate screening assay for scavenging activity against 1O2.

Generation and detection of singlet oxygen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1a, b
Fig. 2a, b
Fig. 3a, b
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge J (eds) (1990) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  2. Ryter SW, Tyrrell RM (1998) Free Radical Biol Med 24:1520–1534

    Google Scholar 

  3. Davies MJ (2003) Biochem Biophys Res Commun 305:761–770

    Article  CAS  Google Scholar 

  4. Klotz LO, Kroncke KD, Sies H (2003) Photochem Photobiol Sci 2:88–94

    Article  CAS  Google Scholar 

  5. Davies MJ (2004) Photochem Photobiol Sci 3:7–25

    Article  Google Scholar 

  6. Buettner GR (1987) Free Radical Biol Med 3:259–303

    Google Scholar 

  7. Zang LY, Misra BR, van Kuijk FJ, Misra HP (1995) Biochem Mol Biol Int 37:1187–1195

    CAS  Google Scholar 

  8. Das KC, Das CK (2000) Biochem Biophys Res Commun 277:443–447

    Article  CAS  Google Scholar 

  9. Lavi R, Sinyakov M, Samuni A, Shatz S, Friedmann H, Shainberg A, Breitbart H, Lubart R (2004) Free Radical Res 38:893–902

    Google Scholar 

  10. Di Mascio P, Sies H (1989) J Am Chem Soc 111:2909–2914

    Article  Google Scholar 

  11. Martinez LA, Martinez CG, Klopotek BB, Lang J, Neuner A, Braun AM, Oliveros E (2000) Photochem Photobiol B 58:94–107

    Article  CAS  Google Scholar 

  12. Niedre M, Patterson MS, Wilson BC (2002) Photochem Photobiol 75:382–391

    Article  CAS  Google Scholar 

  13. Oosthuizen MMJ, Engelbrecht ME, Lambrechts H, Greyling D, Levy RF (1997) J Biolumin Chemilum 12:277–284

    Article  CAS  Google Scholar 

  14. Kambayashi Y, Ogino K (2003) J Toxicol Sci 28:139–148

    Article  CAS  Google Scholar 

  15. Li XH, Zhang GX, Ma HM, Zhang DQ, Li J, Zhu DB (2004) J Am Chem Soc 126:11543–11548

    Article  CAS  Google Scholar 

  16. Miyamoto A, Nakamura K, Ohba Y, Kishikawa N, Nakashima, K, Kuroda N (2006) Anal Sci 22:73–76

    Article  CAS  Google Scholar 

  17. Sun S, Li X, Zhang G, Ma H, Zhang D, Bao Z (2006) Biochim Biophys Acta 1760:440–444

    CAS  Google Scholar 

  18. Wozniak M, Tanfani F, Bertoli E, Zolese G, Antosiewicz J (1991) Biochim Biophys Acta 1082:94–100

    CAS  Google Scholar 

  19. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Angew Chem Int Edit 38:2899–2901

    Google Scholar 

  20. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) J Am Chem Soc 123:2530–2536

    Article  CAS  Google Scholar 

  21. Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) J Exp Bot 57:1725–1734

    Article  CAS  Google Scholar 

  22. Tan M, Song B, Wang G, Yuan J (2006) Free Radical Biol Med 40:1644–1653

    Article  CAS  Google Scholar 

  23. Gomes A, Fernandes E, Lima JLFC (2005) J Biochem Biophys Methods 65:45–80

    Article  CAS  Google Scholar 

  24. Kraljic I, El Mohsni SA (1978) Photochem Photobiol 28:577–581

    CAS  Google Scholar 

  25. Steinbeck MJ, Khan AU, Karnovsky MJ (1992) J Biol Chem 267:13425–13433

    CAS  Google Scholar 

  26. Müller-Breitkreutz K, Mohr H, Briviba K, Sies H (1995) J Photochem Photobiol B 30:63–70

    Article  Google Scholar 

  27. Atlante A, Passarella S (1999) Brain Res Brain Res Protocol 4:266–270

    Google Scholar 

  28. Rajendran M, Ramasamy S, Rajamanickam C, Gandhidasan R, Murugesan R (2003) Biochim Biophys Acta 1622:65–72

    CAS  Google Scholar 

  29. Kanofsky JR, Sima PD (2000) Photochem Photobiol 71:361–368

    Article  CAS  Google Scholar 

  30. Cynshi O, Takashima Y, Katoh Y, Tamura K, Sato M, Fujita Y (1995) J Biolumin Chemilumin 10:261–269

    Article  CAS  Google Scholar 

  31. Piatt J, O’Brien PJ (1979) Eur J Biochem 93:323–332

    Article  CAS  Google Scholar 

  32. Nakashima A, Ohtawa M, Iwasaki K, Wada M, Kuroda N, Nakashima K (2001) Life Sci 69:1381–1389

    Article  CAS  Google Scholar 

  33. Aboul-Enein HY, Kruk I, Lichszteld K, Michalska T, Kladna A, Marczynski S, Olgen S (2004) Luminescence 19:1–7

    Article  CAS  Google Scholar 

  34. Wasserman HH, Scheffer JR (1967) J Am Chem Soc 89:3073–3075

    Article  CAS  Google Scholar 

  35. Turro NJ, Chow MF (1981) J Am Chem Soc 103:7218–7224

    Article  CAS  Google Scholar 

  36. Di Mascio P, Kaiser S, Sies H (1989) Arch Biochem Biophys 274:532–538

    Article  Google Scholar 

  37. Saint-Jean R, Canonne MP (1971) Bull Soc Chim Fr 3330–3334

  38. Marvel CS, Wilson BD (1958) J Org Chem 23:1483–1488

    Article  CAS  Google Scholar 

  39. Tomita M, Irie M, Ukita T (1969) Biochemistry 8:5149–5160

    Article  CAS  Google Scholar 

  40. Ramu A, Mehta MM, Leaseburg T, Aleksic A (2001) Cancer Chemother Pharmacol 47:338–346

    Article  CAS  Google Scholar 

  41. Sakurai H, Yasui H, Yamada Y, Nishimura H, Shigemoto M (2005) Photochem Photobiol Sci 4:715–720

    Google Scholar 

  42. Devasagayam TPA, Sundquist AR, Di Mascio P, Kaiser S, Sies H (1991) J Photochem Photobiol B Biol 9:105–116

    Article  CAS  Google Scholar 

  43. Saito I, Matsuura T (1981) J Am Chem Soc 103:188–190

    Article  CAS  Google Scholar 

  44. Hasty N, Merkel PB, Radlick P, Kearns DR (1972) Tetrahedron Lett 1:9–52

    Google Scholar 

  45. Harbour JR, Issler SL (1982) J Am Chem Soc 104:903–905

    Article  CAS  Google Scholar 

  46. Aubry JM (1989) J Org Chem 54:726–728

    Article  CAS  Google Scholar 

  47. Gomes A, Fernandes E, Lima JLFC (2006) J Fluorescence 16:119–139

    Article  CAS  Google Scholar 

  48. Grzelak A, Rychlik B, Bartosz G (2001) Free Radical Biol Med 30:1418–1425

    Google Scholar 

  49. Hanson KM, Clegg RM (2002) Photochem Photobiol 76:57–63

    Article  CAS  Google Scholar 

  50. Ronsein GE, Miyamoto S, Bechara E, Di Mascio P (2006) Quim Nova 29:563–568

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by FCT and FEDER in the ambit of the project POCI/QUI/59284/2004. David Costa acknowledges FCT and FSE his PhD grant (SFRH/BD/10483/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduarda Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, D., Fernandes, E., Santos, J.L.M. et al. New noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen. Anal Bioanal Chem 387, 2071–2081 (2007). https://doi.org/10.1007/s00216-006-0998-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0998-9

Keywords

Navigation