Skip to main content
Log in

Investigation of NO x precursor compounds and other combustion by-products in the primary combustion zone of a waste-incineration plant using on-line, real-time mass spectrometry and Fourier-transform infrared spectrometry (FTIR)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

On-line analysis of trace and bulk gas compounds in the burning chamber of a waste-incineration plant has been performed, with high temporal resolution, by use of a variety of distinctly different measurement techniques. Time-of-flight mass spectrometry was performed with simultaneous use of three ionization techniques—resonance-enhanced multiphoton ionization (REMPI), single-photon ionization (SPI), and electron-impact ionization (EI). Chemical-ionization mass spectrometry (CIMS), Fourier-transform infrared spectrometry (FTIR), and electrochemical methods were also used. Sampling was conducted by means of a newly developed air-cooled stainless steel lance, to cope with the high temperatures and elevated particle concentrations at the sampling location. Nitrogen species were mainly nitrogen monoxide, ammonia, and hydrogen cyanide (HCN), with a small amount (approximately 0.3%) of aromatic nitrogen compounds. NO, NH3, and HCN are the main contributors to the NO x -formation process in the postulated fuel–NO reaction scheme dominant at this location. The NO recycling process thereby plays a major role. Changes in plant operating conditions have a noticeable impact only when the air supply is varied. For example, reduction of oxygen leads to an increase in the HCN fraction of the total nitrogen content and a decrease in the NO fraction, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sillman S (1999) Atmos Environ 33:1821–1845

    Article  CAS  Google Scholar 

  2. Leighton PA (1961) Photochemistry of air pollution. Academic Press, New York

    Google Scholar 

  3. Rabl A, Eyre N (1998) Environ Intl 24:835–850

    Article  CAS  Google Scholar 

  4. Strand A, Hof O (1995) Atmos Environ 30:1291–1303

    Article  Google Scholar 

  5. Lee DS, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Atmos Environ 31:1735–1749

    Article  CAS  Google Scholar 

  6. Zeldovich YB (1946) Acta Physicochim USSR 21:577–628

    CAS  Google Scholar 

  7. Baulch DL, Cobos CJ, Cox AM, Frank P, Haymann G, Just T, Kerr JA, Murrels T, Pilling MJ, Twe J, Walker RW, Warnatz J (1991) Supplement I. J Phys Chem Ref Data 22:847

    Google Scholar 

  8. Fenimore CP (1976) Combust Flame 26:249–256

    Article  CAS  Google Scholar 

  9. Hayhurst AN, Vince IM (1980) Prog Energy Combust Sci 6:35–51

    Article  CAS  Google Scholar 

  10. Glarborg P, Jensen AD, Johnsson JE (2003) Prog Energy Combust Sci 29:89–113

    Article  CAS  Google Scholar 

  11. Visona SP, Stanmore BR (1996) Combust Flame 105:92–103

    Article  CAS  Google Scholar 

  12. Glarborg P, Alzueta MU, Dam-Johansen K, Miller JA (1998) Combust Flame 115:1–27

    Article  CAS  Google Scholar 

  13. Molina A, Edings EG, Pershinng DW, Sarofim AF (2000) Prog Energy Combust Sci 26:507–531

    Article  CAS  Google Scholar 

  14. Wu Z, Sugimoto Y, Kawashima H (2001) Fuel 80:251–254

    Article  CAS  Google Scholar 

  15. Taniguchi M, Yamamoto K, Kobayashi H, Kiyama K (2002) Fuel 81:363–371

    Article  CAS  Google Scholar 

  16. Dagaut P, Luche J, Cathonnet M (2000) Combust Flame 121:651–661

    Article  CAS  Google Scholar 

  17. Cant NW, Cowan AD, Liu IOY, Satsuma A (1999) Catal Today 54:473–482

    Article  CAS  Google Scholar 

  18. Boesl U, Weinkauf R, Weickhardt C, Schlag EW (1994) Intl J Mass Spectrom Ion Proc 131:87–124

    Article  CAS  Google Scholar 

  19. Miller JC, Compton RN (1982) J Chem Phys 76(8):3967–3973

    Article  ADS  CAS  Google Scholar 

  20. Pallix JB, Schühle U, Becker CH, Huestis DL (1989) Anal Chem 61:805–811

    Article  CAS  Google Scholar 

  21. Butcher DJ (1999) Microchem J 62:354–362

    Article  CAS  Google Scholar 

  22. Tonokura K, Nakamura T, Koshi M (2003) Anal Sci 19:1109–1113

    Article  PubMed  CAS  Google Scholar 

  23. Boesl U, Neusser HJ, Schlag EW (1978) Z Naturforsch 33A:1546–1548

    Google Scholar 

  24. Tembreull R, Sin CH, Pang HM, Lubman DM (1985) Anal Chem 57:2911–2917

    Article  CAS  Google Scholar 

  25. Hager JW, Wallace SC (1988) Anal Chem 60:5–10

    Article  CAS  Google Scholar 

  26. Lubman DM (1990) Lasers and mass spectrometry. Oxford University Press, New York

  27. Boesl U, Zimmermann R, Weickhardt C, Lenoir D, Schramm K-W, Kettrup A, Schlag EW (1994) Chemosphere 29:1429–1440

    Article  CAS  Google Scholar 

  28. Becker CH (1991) Fresenius J Anal Chem 341:3–6

    Article  CAS  Google Scholar 

  29. Butcher DJ, Goeringer DE, Hurst GB (1999) Anal Chem 71:489–496

    Article  CAS  Google Scholar 

  30. Kornienko O, Ada ET, Tinka J, Wijesundara MBJ, Hanley L (1998) Anal Chem 70:1208–1213

    Article  CAS  Google Scholar 

  31. Materer N, Goodman RS, Leone SR (1997) J Vac Sci Technol A 15(4):2134–2142

    Article  ADS  CAS  Google Scholar 

  32. McEnally CS, Pfefferle LD, Mohammed RK, Smooke MD, Colket MB (1999) Anal Chem 71:364–372

    Article  CAS  Google Scholar 

  33. Shi YJ, Hu XK, Mao DM, Dimov SS, Lipson RH (1998) Anal Chem 70:4534–4539

    Article  CAS  Google Scholar 

  34. Steenvoorden RJJM, Kistemaker PG, Vries AE, Michalak L, Nibbering NMM (1991) Intl J Mass Spectrom Ion Proc 107:475–489

    Article  CAS  Google Scholar 

  35. Trevor JL, Hanly L, Lykke KR (1997) Rapid Commun Mass Sp 11:587–589

    Article  CAS  Google Scholar 

  36. Vries MS, Hunziker HE (1997) J Photochem Photobiol A 106:31–36

    Article  Google Scholar 

  37. Zoller DL, Sum ST, Johnston MV (1999) Anal Chem 71:866–872

    Article  CAS  Google Scholar 

  38. Zimmermann R, Heger HJ, Kettrup A, Boesl U (1997) Rapid Commun Mass Sp 11:1095–1102

    Article  Google Scholar 

  39. Zimmermann R, Heger HJ, Kettrup A (1999) Fresenius J Anal Chem 363:720–730

    Article  CAS  Google Scholar 

  40. Zimmermann R, Dorfner R, Kettrup A (1999) J Anal Appl Pyrol 49:257–266

    Article  CAS  Google Scholar 

  41. Heger HJ, Zimmermann R, Dorfner R, Beckmann M, Griebel H, Kettrup A, Boesl U (1999) Anal Chem 71:46–57

    Article  CAS  Google Scholar 

  42. Oser H, Thanner R, Grotheer H-H (1996) Combust Sci Technol 116–117:567–582

    Google Scholar 

  43. Grotheer H-H, Nomayo M, Pokorny H, Thanner R, Gullett BK (2001) Trends Appl Spec 3:181–206

    CAS  Google Scholar 

  44. Oudejans L, Touati A, Gullett BK (2004) Anal Chem 76:2517–2524

    Article  PubMed  CAS  Google Scholar 

  45. Heger HJ, Zimmermann R, Blumenstock M, Kettrup A (2001) Chemosphere 42:691–696

    Article  PubMed  CAS  Google Scholar 

  46. Dorfner R, Ferge T, Kettrup A, Zimmermann R, Yeretzian C (2003) J Agric Food Chem 51:5768–5773

    Article  PubMed  CAS  Google Scholar 

  47. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Anal Chem 76:1386–1402

    Article  PubMed  CAS  Google Scholar 

  48. Streibel T, Hafner K, Mühlberger F, Adam T, Zimmermann R (2005) Appl Spec, accepted for publication

  49. Mühlberger F (2003) Entwicklung von on-line-Analyseverfahren auf Basis der Einphotonenionisations-Massenspektrometrie. PhD Thesis, Technische Universität München

  50. Mühlberger F, Hafner K, Kaesdorf S, Ferge T, Zimmermann R (2004) Anal Chem 76:6753–6762

    Article  PubMed  CAS  Google Scholar 

  51. Harris S (1969) Proc IEEE 57:2096–2113

    Article  Google Scholar 

  52. Mühlberger F, Zimmermann R, Kettrup A (2001) Anal Chem 73:3590–3604

    Article  PubMed  CAS  Google Scholar 

  53. Gittins CM, Castaldi MJ, Senkan SM, Rohlfing EA (1997) Anal Chem 69:286–293

    Article  CAS  Google Scholar 

  54. Steenvoorden RJJM, Hage ERE, Boon JJ, Kistemaker PG, Weeding TL (1994) Org Mass Spec 29:78–84

    Article  CAS  Google Scholar 

  55. Nir E, Hunziker HE, Vries MS (1999) Anal Chem 71:1674–1678

    Article  CAS  Google Scholar 

  56. Hafner K (2004) Untersuchungen zur Bildung brennstoffabhängiger Stickoxide bei der Abfallverbrennung mittels on-line analytischer Messmethoden. PhD Thesis, Technische Universität München

  57. Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R (2005) Anal Chem 77:2288–2296

    Article  PubMed  CAS  Google Scholar 

  58. Lindinger W, Hansel A, Jordan A (1998) Intl J Mass Spectrom Ion Proc 173:191–241

    Article  ADS  CAS  Google Scholar 

  59. Lindinger W, Hirber J, Paretzke H (1993) Intl J Mass Spectrom Ion Proc 129: 79–88

    Article  CAS  Google Scholar 

  60. Cao L, Mühlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, Zimmermann R (2003) Anal Chem 75:5639–5645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the German Federal Ministry of Education and Research as part of the HGF strategy funds’ project “Primary reduction of NO x emissions as an example of optimization of combustion processes in waste-incineration plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streibel, T., Hafner, K., Mühlberger, F. et al. Investigation of NO x precursor compounds and other combustion by-products in the primary combustion zone of a waste-incineration plant using on-line, real-time mass spectrometry and Fourier-transform infrared spectrometry (FTIR). Anal Bioanal Chem 384, 1096–1106 (2006). https://doi.org/10.1007/s00216-005-3340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3340-z

Keywords

Navigation