Skip to main content
Log in

Size-dependent optical properties of [6]-, [8]- and [10]Cycloparaphenylene dications: the role of degenerate states

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The E \(\otimes\) e Jahn–Teller (JT) effects associated with the lowest excited degenerate electronic states (S\(_1\) and S\(_2\)) of [6]-, [8]- and [10]cycloparaphenylene dications are studied to unravel their size-dependent optical properties. A model Hamiltonian within the linear vibronic coupling approach is adapted to generate the JT-split potential energy surfaces. Computed JT stabilization energy follows the trend: [6]CPP\(^{2+}\) < [8]CPP\(^{2+}\) > [10]CPP\(^{2+}\). Theoretical absorption spectral features are generated using the wavepacket simulations within the reduced- and full-dimensional framework. These simulations reproduce the size-dependent absorption spectral broadening where the broadening increases with the increase in CPP ring size. The near-degeneracy of JT-split states (S\(_1\) and S\(_2\)) indicates a possible fluorescence emission from both the states in these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR (2008) Synthesis, characterization, and theory of [9]-, [12]-, and [18] cycloparaphenylene: Carbon nanohoop structures. J Am Chem Soc 130(52):17646–17647. https://doi.org/10.1021/ja807126u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masumoto Y, Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M (2018) Near-infrared fluorescence from in-plane-aromatic cycloparaphenylene dications. J Phys Chem A 122(23):5162–5167. https://doi.org/10.1021/acs.jpca.8b03105

    Article  CAS  PubMed  Google Scholar 

  3. Burley GA (2005) Trannulenes with “in-plane’’ aromaticity: candidates for harvesting light energy. Angew Chem Int Ed 44(21):3176–3178

    Article  CAS  Google Scholar 

  4. McEwen AB, Schleyer PVR (1986) In-plane aromaticity and trishomoaromaticity: a computational evaluation. J Org Chem 51(23):4357–4368

    Article  CAS  Google Scholar 

  5. Fokin AA, Jiao H, PvR Schleyer (1998) From dodecahedrapentaene to the “[n]trannulenes". a new in-plane aromatic family. J Am Chem Soc 120(36):364–9365

    Article  Google Scholar 

  6. Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M (2015) In-plane aromaticity in cycloparaphenylene dications: a magnetic circular dichroism and theoretical study. J Am Chem Soc 137(1):82–85. https://doi.org/10.1021/ja511320f

    Article  CAS  PubMed  Google Scholar 

  7. Kayahara E, Kouyama T, Kato T, Yamago S (2016) Synthesis and characterization of [n]cpp (n = 5, 6, 8, 10, and 12) radical cation and dications: Size-dependent absorption, spin, and charge delocalization. J Am Chem Soc 138(1):338–344. https://doi.org/10.1021/jacs.5b10855

    Article  CAS  PubMed  Google Scholar 

  8. Fujitsuka M, Kayahara E, Lu C, Yamago S, Majima T (2018) Significant structural relaxations of excited [n]cycloparaphenylene dications (n = 5–9). Phys Chem Chem Phys 20:29207–29211

    Article  CAS  PubMed  Google Scholar 

  9. Yamago S, Kayahara E, Iwamoto T (2014) Organoplatinum-mediated synthesis of cyclic \(\pi\)-conjugated molecules: towards a new era of three-dimensional aromatic compounds. Chem Rec 14(1):84–100

    Article  CAS  PubMed  Google Scholar 

  10. Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S (2011) Selective and random syntheses of [n] cycloparaphenylenes (n= 8–13) and size dependence of their electronic properties. J Am Chem Soc 133(21):8354–8361

    Article  CAS  PubMed  Google Scholar 

  11. Golder MR, Jasti R (2015) Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc Chem Res 48(3):557–566

    Article  CAS  PubMed  Google Scholar 

  12. Camacho C, Niehaus TA, Itami K, Irle S (2013) Origin of the size-dependent fluorescence blueshift in [n]cycloparaphenylenes. Chem Sci 4:187–195. https://doi.org/10.1039/C2SC20878D

    Article  CAS  Google Scholar 

  13. Becke AD (1993) Density-functional thermochemistry. iii. the role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  14. Alvarez MP, Ruiz Delgado MC, Taravillo M, Baonza VG, López Navarrete JT, Evans P, Jasti R, Yamago S, Kertesz M, Casado J (2016) The raman fingerprint of cyclic conjugation: the case of the stabilization of cations and dications in cycloparaphenylenes. Chem Sci 7:3494–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reddy VS, Camacho C, Xia J, Jasti R, Irle S (2014) Quantum dynamics simulations reveal vibronic effects on the optical properties of [n]cycloparaphenylenes. J Chem Theory Comput 10(9):4025–4036. https://doi.org/10.1021/ct500524y

    Article  CAS  PubMed  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas o, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) (Gaussian 09 Revision A.02, Gaussian Inc. Wallingford CT)

  17. Köppel H, Domcke W, Cederbaum LS (1984) Multimode molecular dynamics beyond the born-oppenheimer approximation. Wiley, London, pp 59–246

    Google Scholar 

  18. Meyer H-D, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent hartree approach. Chem Phys Lett 165(1):73–78

    Article  CAS  Google Scholar 

  19. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets. Phys Rep 324(1):1–105

    Article  CAS  Google Scholar 

  20. Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent hartree theory. J Chem Phys 119(3):1289–1299. https://doi.org/10.1063/1.1580111

    Article  CAS  Google Scholar 

  21. Manthe U (2008) A multilayer multiconfigurational time-dependent hartree approach for quantum dynamics on general potential energy surfaces. J Chem Phys 128(16):164116

    Article  PubMed  Google Scholar 

  22. Vendrell O, Meyer H-D (2011) Multilayer multiconfiguration time-dependent hartree method: implementation and applications to a henon-heiles hamiltonian and to pyrazine. J Chem Phys 134(4):044135

    Article  PubMed  Google Scholar 

  23. Vendrell O, Meyer H (2020) The MCTDH Package, Version 8.5.11. See http://mctdh.uni-hd.de

  24. Kakarlamudi AC, Isukapalli SVK, Vennapusa SR (2022) Revealing the vibronic coupling effects in the size-dependent optical properties of cycloparaphenylene dications. Mol Phys 120(9):2055505

    Article  Google Scholar 

  25. Nijegorodov NI, Downey WS, Danailov MB (2000) Systematic investigation of absorption, fluorescence and laser properties of some p- and m-oligophenylenes. Spectrochim Acta A 56(4):783–795

    Article  CAS  Google Scholar 

  26. Isukapalli SVK, Nag P, Vennapusa SR (2022) Optical properties of para-oligophenylenes: a case study of electronic absorption spectrum and relaxation dynamics of terphenyl. Int J Quantum Chem 122(13):26912

    Article  Google Scholar 

Download references

Acknowledgements

PN thanks the Ministry of Education, Government of India, for the doctoral fellowship under Prime Minister’s Research Fellows (PMRF) scheme. The authors acknowledge IISER TVM for computational facilities.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaranjana Reddy Vennapusa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information

Details of ground-state harmonic vibrational frequencies, vibronic coupling parameters, geometries of various stationary points, and MCTDH data. (1,186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakarlamudi, A.C., Nag, P. & Vennapusa, S.R. Size-dependent optical properties of [6]-, [8]- and [10]Cycloparaphenylene dications: the role of degenerate states. Theor Chem Acc 143, 31 (2024). https://doi.org/10.1007/s00214-024-03106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03106-z

Keywords

Navigation