Skip to main content
Log in

Alkali metal chlorides in DMSO–methanol binary mixtures: insights into the structural properties through molecular dynamics simulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have performed a series of constrained molecular dynamics simulations to study the ion-pair solvation of alkali metal chlorides (Li+Cl, Na+Cl, K+Cl and Cs+Cl) in dimethyl sulfoxide (DMSO)–methanol (MeOH) binary mixtures. Structural and dynamical properties of the ionic association are studied using the potentials of mean force (PMFs), spatial density distribution functions, hydrogen bonding, excess coordination number and angular distribution functions. For Li+Cl and Na+Cl ion pair, three minima in the PMFs are observed corresponding to contact ion pairs (CIPs), solvent-shared ion pairs (SShIPs) and solvent-separated ion pairs, whereas for K+Cl and Cs+Cl ion pair only CIPs are present and instead of a SShIP minima, a plateau-like region is present. The CIPs are found to be most stable in pure DMSO. An increment in the average number of hydrogen bonds with an increase in the mole fraction of methanol is observed in the bulk as well as in the solvation shell of the ions. Structural analysis indicates that all the alkali metal cations are selectively solvated by methanol in all the compositions except that for \(x_{{{\text{methanol}}}}\) = 0.25, whereas Cl ion is preferentially solvated by methanol irrespective of mixture composition and the cationic counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Angell CA (2002) Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev 8:2627–2650

    Article  Google Scholar 

  2. Wang P, Andreko A, Young RD (2002) A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilib 203:141–176

    Article  CAS  Google Scholar 

  3. Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Q Rev Biophys 34(2):105–267

    Article  CAS  PubMed  Google Scholar 

  4. Sherman DM, Collings MD (2002) Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations. Geochem Trans 3:102–107

    Article  PubMed Central  Google Scholar 

  5. Restrepo-Angulo I, De Vizcaya-Ruiz A, Camacho J (2010) Ion channels in toxicology. J Appl Toxicol 30:497–512

    Article  CAS  PubMed  Google Scholar 

  6. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  7. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford, pp 781–782

    Google Scholar 

  8. Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K (2012) Liquid metal batteries: past, present, and future. Chem Rev 113:2075–2099

    Article  PubMed  Google Scholar 

  9. Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481

    Article  PubMed  Google Scholar 

  10. Salanne M (2017) Ionic liquids for supercapacitor applications. Top Curr Chem 375:63

    Article  Google Scholar 

  11. Myers PD, Goswami DY (2016) Thermal energy storage using chloride salts and their eutectics. Appl Therm Eng 109:889–900

    Article  Google Scholar 

  12. Rollet A-L, Salanne M (2011) Studies of the local structures of molten metal halides. Annu Rep Sec C 107:88–123

    Article  CAS  Google Scholar 

  13. Cummings PT, Cochran HD, Simonson JM, Mesmer RE, Karaborni S (1991) Simulation of supercritical water and of supercritical aqueous solutions. J Chem Phys 94:5606–5621

    Article  CAS  Google Scholar 

  14. Chialvo AA, Cummings PT, Simonson JM, Mesmer RE (1997) Molecular simulation study of speciation in supercritical aqueous NaCl solutions. J Mol Liq 73–74:361–372

    Article  Google Scholar 

  15. Liu W, Wood RH, Doren DJ (2008) Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 K to 1073 K and from 0 to 0.9 g/cm3. J Phys Chem B 112:7289–7297

    Article  CAS  PubMed  Google Scholar 

  16. Nahitgal IG, Zasetsky AY, Svishchev IM (2008) Nucleation of NaCl nanoparticles in supercritical water: molecular dynamics simulations. J Phys Chem B 112:7537–7543

    Article  Google Scholar 

  17. Fedtova MV (2010) Effect of temperature and pressure on structural self-organization of aqueous sodium chloride solutions. J Mol Liq 153:9–14

    Article  Google Scholar 

  18. Laudernet Y, Cartailler T, Turq P, Ferrario MA (2003) Microscopic description of concentrated potassium fluoride aqueous solutions by molecular dynamics simulations. J Phys Chem B 107:2354–2361

    Article  CAS  Google Scholar 

  19. Kohagen M, Mason PE, Jungwirth P (2014) Accurate description of calcium solvation in concentrated aqueous solutions. J Phys Chem B 118:7902–7909

    Article  CAS  PubMed  Google Scholar 

  20. Owczarek E, Rybicki M, Hawlicka E (2009) Influence of CaCl2 on micro heterogeneity of methanol-water mixtures. Chem Phys 363:78–87

    Article  CAS  Google Scholar 

  21. Odinokov AV, Leontyev IV, Basilevsky MV, Petrov NC (2011) Potentials of mean force for ion-pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations. Mol Phys 109:217–227

    Article  CAS  Google Scholar 

  22. Madhusoodanan M, Tembe BL (1994) Potentials of mean force of the sodium chloride ion pair in dimethyl sulfoxide: a constrained molecular dynamics study. J Phys Chem 98:7090–7094

    Article  CAS  Google Scholar 

  23. Chalaris M, Samios J (1998) A molecular dynamics simulation study of Li+-Cl- ion-pair dissolved in DMF (-d7). J Mol Liq 78:201–215

    Article  CAS  Google Scholar 

  24. Roy S, Jana B, Bagchi B (2012) Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active sites of lysozyme. J Chem Phys 136:03B608

    Article  Google Scholar 

  25. Wu Z, Huang K (2018) Abnormal characteristics of binary molecular clusters in DMSO-ethanol mixtures under external electric fields. Mol Phys 116:1198–1207

    Article  CAS  Google Scholar 

  26. Roshkovskii GV, Ovchinnikova RA, Zh PNV (1982) Prikl Khim 55:1858–1860

    CAS  Google Scholar 

  27. Mazurkiewicz J, Tomasik P (1990) Viscosity and dielectric properties of liquid binary mixtures. J Phys Org Chem 3:493–502

    Article  CAS  Google Scholar 

  28. Srinivas G, Mukherjee A, Bagchi B (2011) Nonideality in the composition dependence of viscosity in binary mixtures. J Chem Phys 114:6220–6228

    Article  Google Scholar 

  29. Luzar A (1981) The contribution of hydrogen bonds to bulk and surface thermodynamic properties of diemthylsulfoxide-water mixtures. J Chem Phys 91:3603–3613

    Article  Google Scholar 

  30. Catalán J, Díaz C, García-Blanco F (2001) Characterization of binary solvent mixtures of DMSO with water and other cosolvents. J Org Chem 66:5846–5852

    Article  PubMed  Google Scholar 

  31. Kaatze U, Brai M, Sholle F-D, Pottel R (1990) Ultrasonic absorption and sound velocity of dimethyl sulfoxide/water mixtures in the complete composition range. J Mol Liq 44:197–209

    Article  CAS  Google Scholar 

  32. Mukherjee A, Bagchi B (2001) Nonideality in binary mixtures: correlations between excess volume, excess viscosity, and diffusion coefficients. J Phys Chem B 105:9581–9585

    Article  CAS  Google Scholar 

  33. Hernandez-Perni G, Leuenberger H (2005) The characterization of aprotic polar liquids and percolation phenomena in DMSO/water mixtures. Eur J Pharm Biopharm 61:201–213

    Article  CAS  PubMed  Google Scholar 

  34. Vaisman II, Berkowitz ML (1992) Local structure order and molecular associations in water-DMSO mixtures. Molecular dynamics study. J Am Chem Soc 114:7889–7896

    Article  CAS  Google Scholar 

  35. Stafford JG, Schaffer PC, Leung PS, Doebbler GF, Brady GW, Lyden EFX (1969) Neutron inelastic scattering and X-ray studies of aqueous solutions of dimethylsulfoxide and dimethylsulphone. J Chem Phys 50:2140–2159

    Article  Google Scholar 

  36. Soper AK, Luzar A (1996) Orientation of water molecules around small polar and nonpolar groups in solution: a neutron diffraction and computer simulation study. J Phys Chem 100:1357–1367

    Article  CAS  Google Scholar 

  37. Soper AK, Luzar A (1992) A neutron diffraction study of dimethyl sulphoxide-water mixtures. J Chem Phys 97:1320–1331

    Article  CAS  Google Scholar 

  38. Luzar A, Chandler D (1993) Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J Chem Phys 98:8160–8173

    Article  CAS  Google Scholar 

  39. Borin IA, Skaf MS (1991) Molecular association between water and dimethyl sulfoxide in solution: a molecular dynamics simulation study. J Chem Phys 110:6412–6420

    Article  Google Scholar 

  40. Day TJF, Patey GN (1990) Ion solvation dynamics in water-methanol and water-dimethylsulfoxide mixtures. J Chem Phys 110:10937–10944

    Article  Google Scholar 

  41. Martins LR, Tamashiro A, Laria D, Skaf MS (2003) Solvation dynamics of coumarin 153 in dimethylsulfoxide-water mixtures: molecular dynamics simulations. J Chem Phys 113:5955–5963

    Article  Google Scholar 

  42. Skaf MS (1999) Molecular dynamics study of dielectric properties of water-dimethyl sulfoxide mixtures. J Phys Chem A 103:10719

    Article  CAS  Google Scholar 

  43. Lei Y, Li H, Han S (2003) An all atom simulation study on intermolecular interaction of DMSO-water system. Chem Phys Lett 380:542–548

    Article  CAS  Google Scholar 

  44. Geerke DP, Oostenbrink C, van der Vegt NFA, van Gunsteren WF (2004) An effective force field for molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide-water mixtures. J Phys Chem B 108:1436

    Article  CAS  Google Scholar 

  45. Mancera RL, Chalaris M, Refson K, Samios J (2004) Molecular dynamics simulations of dilute aqueous DMSO solutions. A temperature dependence study of the hydrophobic and hydrophilic behavior around DMSO. Phys Chem Chem Phys 6:94–102

    Article  CAS  Google Scholar 

  46. Zhang N, Li W, Chen C, Zuo J (2013) Molecular dynamics simulation of aggregation in dimethyl sulfoxide-water binary mixture. Comput Theor Chem 1017:126–135

    Article  CAS  Google Scholar 

  47. Luzar A, Soper AK, Chandler D (1993) Combined neutron diffraction and computer simulation study of liquid dimethyl sulfoxide. J Chem Phys 99:044502

    Article  Google Scholar 

  48. Mancera RL, Chalaris M, Samios J (2004) The concentration effect on the behavior of dilute aqueous DMSO solutions. A computer simulation study. J Mol Model 110:147–153

    CAS  Google Scholar 

  49. Ozal TA, van der Vegt NF (2006) Confusing cause and effect: Energy-entropy compensation in the preferential solvation of a nonpolar solute in dimethyl sulfoxide/water mixtures. J Phys Chem B 110:12104–12112

    Article  PubMed  Google Scholar 

  50. Das AK, Tembe BL (1999) Molecular dynamics simulations of sodium chloride solutions in water-dimethyl sulphoxide mixtures: potentials of mean force and solvation structures. J Chem Phys 111:7526

    Article  CAS  Google Scholar 

  51. Vishnyakov A, Lyubartsev AP, Laaksonen A (2001) Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide-water mixture. J Phys Chem A 105:1702–1710

    Article  CAS  Google Scholar 

  52. Nieto-Draghi C, Ávalos JB (2003) Transport properties of dimethyl sulfoxide aqueous solutions. J Chem Phys 119:4782

    Article  CAS  Google Scholar 

  53. Chowdhuri S, Chandra A (2003) Tracer diffusion of ionic and hydrophobic solutes in water-dimethyl sulfoxide mixtures: effects of varying composition. J Chem Phys 119:4360

    Article  CAS  Google Scholar 

  54. Hazra MK, Bagchi B (2018) Non-equilibrium solvation dynamics in water-DMSO binary mixture: composition dependence of non-linear relaxation. J Chem Phys 149:084501

    Article  PubMed  Google Scholar 

  55. Wiewiór PP, Shirota H Jr, Castner EW (2012) Aqueous dimethyl sulfoxide solutions: Inter-and intra-molecular dynamics. J Chem Phys 116:4643

    Article  Google Scholar 

  56. Hughes ZE, Mark AE, Mancera RL (2012) Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes. J Phys Chem B 116:11911–11923

    Article  CAS  PubMed  Google Scholar 

  57. Hughes ZE, Mancera RL (2013) Molecular dynamics simulation of mixed DOPC−β-Sitosterol Bilayers and their interactions with DMSO. Soft Matter 9:2920–2935

    Article  CAS  Google Scholar 

  58. Mandumpal JB, Kreck CA, Mancera RLA (2011) Molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys Chem Chem Phys 13:3839–3842

    Article  CAS  PubMed  Google Scholar 

  59. Marcus Y (2002) Solvent mixtures: properties and selective solvation. CRC Press, Boca Raton

    Book  Google Scholar 

  60. Easteal AJ, Woolf LA (1985) (p, Vm, T, x) measurements for [(1–x) H2O+xCH3OH] in the range 278 to 323 K and 0.1 to 280 MPa II .Thermodynamic excess properties. J Chem Thermodyn 17:69

    Article  CAS  Google Scholar 

  61. Easteal AJ, Woolf LA (1985) (p, Vm, T, x) measurements for [(1–x)H2O+xCH3OH] in the range 278 to 323 K and 0.1 to 280 MPa I .Experimental results, isothermal compressibilities, thermal expansivities, and partial molar volumes. J Chem Thermodyn 17:49

    Article  CAS  Google Scholar 

  62. Staveley LAK, Hart KR, Tupman WI (1953) Faraday Soc 156:130

    Article  Google Scholar 

  63. Onori G (1987) Adiabatic compressibility and structure of aqueous solutions of methyl alcohol. J Chem Phys 87:1251

    Article  CAS  Google Scholar 

  64. Woolf LA (1985) Insights into solute-solute-solvent interactions from transport property measurements with particular reference to methanol-water mixtures and their constituents. Pure Appl Chem 57:1083–1090

    Article  CAS  Google Scholar 

  65. Roux AH, Desnoyers JE (1987) Association models for alcohol-water mixtures. In: Proceedings of the Indian academy of sciences-chemical sciences vol 98: pp 435-451

  66. Hawlicka E (1983) Self-diffusion in water-alcohol mixtures. Part 1. Water-methanol solution of NaI. Ber Bunsenges Phys Chem 87:425–428

    Article  CAS  Google Scholar 

  67. Versmold H (1980) Studies of the reorientational motions in methanol and methanol-water mixtures. Ber Bunsenges Phys Chem 84:168–173

    Article  CAS  Google Scholar 

  68. Derlacki ZJ, Easteal AJ, Edge AV, Woolf LA (1985) Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol-water solutions at 278 and 298 K. J Phys Chem 89:5318–5322

    Article  CAS  Google Scholar 

  69. Easteal AJ, Woolf LA (1985) Pressure and temperature dependence of tracer diffusion coefficients of methanol, ethanol, acetonitrile, and formamide in water. J Phys Chem 89:1066–1069

    Article  CAS  Google Scholar 

  70. Ferrario M, Haughney M, McDonald IR, Klein ML (1990) Molecular dynamics simulation of aqueous mixtures: methanol, acetone, and ammonia. J Chem Phys 93:5156–5166

    Article  CAS  Google Scholar 

  71. Tanaka H, Gubbins KE (1992) Structure and thermodynamic properties of water-methanol mixtures: role of the water-water interaction. J Phys Chem 97:2626–2634

    Article  CAS  Google Scholar 

  72. Kvamme B (1997) Molecular dynamics simulations and integral equation studies of model systems for aqueous mixtures of small alcohols. Fluid Phase Equilib 131:1–20

    Article  CAS  Google Scholar 

  73. Wensink EJW, Hoffmann AC, van Maaren PJ, van der Spoel D (2003) Dynamic properties of water/alcohol mixtures studied by computer simulations. J Chem Phys 119:7308–7317

    Article  CAS  Google Scholar 

  74. Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336–3359

    Article  CAS  Google Scholar 

  75. Jorgenson WL (1980) Structure and properties of liquid methanol. J Am Chem Soc 102:543–549

    Article  Google Scholar 

  76. Haughney M, Ferrario M, McDonald IR (1987) Molecular dynamic simulations of liquid methanol. J Phys Chem 91:4934–4940

    Article  CAS  Google Scholar 

  77. Laakonen A, Kusalik PG, Svishchew IM (1997) Three-dimensional structure in water-methanol mixtures. J Phys Chem 101:5910–5918

    Article  Google Scholar 

  78. Hawlicka E, Swiatla-Wojick D (1998) Molecular dynamics studies of NaCl solutions in methanol-water mixtures. An effect of NaCl on hydrogen bonded network. Chem Phys 232:361–369

    Article  CAS  Google Scholar 

  79. Hawlicka E (1984) Self-diffusion in water-alcohol mixtures Part II. Water-methanol solutions of LiCl and NaCl. Ber Bunsenges Phys Chem 88:1002–1006

    Article  CAS  Google Scholar 

  80. Hawlicka E, Swiatla-Wojick D (2000) Dynamical properties of NaCl-Methanol-Water system-MD simulation studies. Phys Chem Chem Phys 2:3175–3180

    Article  CAS  Google Scholar 

  81. Hawlicka E, Swiatla-Wojick D (2002) Effect of sodium halides on the structure of methanol-water mixtures-MD simulation studies. J Mol Liq 98:355–367

    Google Scholar 

  82. Hawlicka E, Swiatla-Wojick D (2002) MD simulation studies of selective solvation in methanol-water mixtures: an effect of the charge density of a solute. J Phys Chem A 106:1336–1345

    Article  CAS  Google Scholar 

  83. Skaf MS, Ladanyi BM (1996) Molecular dynamics simulation of solvation dynamics in methanol-water mixtures. J Phys Chem 100:18258–18268

    Article  CAS  Google Scholar 

  84. Hawlicka E, Swiatla-Wojcik D (1997) Molecular dynamics simulation of NaCl solutions in methanol-water mixtures. Intramolecular vibrations of the solvent components. Chem Phys 218:49–55

    Article  CAS  Google Scholar 

  85. Hawlicka E, Swiatla-Wojcik D (1998) Solvation of ions in binary solvents-experimental and MD simulation studies. J Mol Liq 78:7–18

    Article  CAS  Google Scholar 

  86. Bopp P, Jancso G, Heinzinger K (1983) An improved potential for non-rigid water molecules in the liquid phase. Chem Phys Lett 98:129–133

    Article  CAS  Google Scholar 

  87. Jancso G, Bopp P, Heinzinger K (1984) Molecular dynamics study of high density liquid water using a modified central-force potential. Chem Phys 85:377–387

    Article  CAS  Google Scholar 

  88. Pálinkás G, Hawlicka E, Heinzinger K (1987) A molecular dynamics study of liquid methanol with a flexible three-site model. J Phys Chem 91:4334–4341

    Article  Google Scholar 

  89. Feakins D, Watson P (1963) Studies in ion solvation in non- aqueous solvents and their aqueous mixtures. Part I. Properties of ion constituents. J Chem Soc 905:4734–4741

    Article  Google Scholar 

  90. Bujnicka K, Hawlicka E (2006) Solvation of Ca2+ in aqueous methanol-MD simulation studies. J Mol Liq 125:151–157

    Article  CAS  Google Scholar 

  91. Rybicki M, Hawlicka E (2012) Solvation of Mg2+ ions in methanol−water mixtures: molecular dynamics simulation. Chem Phys 400:79–85

    Article  CAS  Google Scholar 

  92. Pálinkás G, Hawlicka E, Heinzinger K (1991) Molecular dynamics simulations of water- methanol mixtures. Chem Phys 158:65–76

    Article  Google Scholar 

  93. Covington AK, Dunn MN (1989) Nuclear magnetic resonance study of preferential solvation. J Chem Soc Faraday Trans 1 85:2827–2834

    Article  CAS  Google Scholar 

  94. Holz M, Weingärtner H, Hertz HG (1977) Nuclear magnetic relaxation of alkali halide nuclei and preferential solvation in methanol +water mixtures. J Chem Soc Faraday Trans 1 73:71–83

    Article  CAS  Google Scholar 

  95. Hawlicka E (1986) Self-diffusion of sodium, chloride and iodide ions in methanol-water mixture. Z Naturforsch A Phys Sci 41:939–943

    Article  Google Scholar 

  96. Vechi SM, Skaf MS (2005) Molecular dynamics simulations of dimethylsulphoxide-methanol mixtures. J Chem Phys 123:15450

    Article  Google Scholar 

  97. Romanowski SJ, Kinart CM, Kinart WJ (1995) Physicochemical properties of dimethyl sulfoxide-methanol liquid mixtures. Experimental and semi empirical quantum chemical studies. J Chem Soc Faraday Trans 91:65–70

    Article  CAS  Google Scholar 

  98. Keshri S, Sarkar A, Tembe BL (2015) Molecular dynamics simulations of Na+–Cl ion-pair in water-methanol mixtures under ambient and supercritical conditions. J Phys Chem B 119:15471–15484

    Article  CAS  PubMed  Google Scholar 

  99. Sarkar A, Dixit MK, Tembe BL (2015) Solvation structures of lithium halides in water-methanol mixtures. Chem Phys 447:76–85

    Article  CAS  Google Scholar 

  100. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  101. Skaf MS (1997) Molecular dynamics simulations of dielectric properties of dimethyl sulfoxide: comparison between available potentials. J Chem Phys 107:7996

    Article  CAS  Google Scholar 

  102. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014107

    Article  PubMed  Google Scholar 

  103. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 63:7182–7190

    Article  Google Scholar 

  104. Cowie MG, Toporowski PM (1964) Can J Chem 39:224

    Google Scholar 

  105. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  106. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  107. Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

  108. Van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem Int Ed Engl 29:992–1023

    Article  Google Scholar 

  109. Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B 113:6782–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li X, Gong LD, Yang ZZ (2008) Molecular dynamics simulations of LiCl association and NaCl association in water by means of ABEEM/MM. Sci China Ser B Chem 51:1221–1230

    Article  CAS  Google Scholar 

  111. Pettitt BM, Rossky PJ (1986) Alkali halides in water: Ion-solvent correlations and ion-ion potentials of mean force at infinite dilution. J Chem Phys 84:5836–5844

    Article  CAS  Google Scholar 

  112. Kovalenko A, Hirata F (2000) Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach. J Chem Phys 112:10391–10402

    Article  CAS  Google Scholar 

  113. Belch AC, Berkowitz M, McCammon JA (1986) Solvation structure of a sodium chloride ion pair in water. J Am Chem Soc 108:1755–1761

    Article  CAS  Google Scholar 

  114. Smith DE, Dang LX (1994) Computer simulations of NaCl association in polarizable water. J Chem Phys 100:3757–3766

    Article  CAS  Google Scholar 

  115. Chialvo AA, Cummings PT, Cochran HD, Simonson JM, Mesmer RE (1995) Na+-Cl ion pair association in supercritical water. J Chem Phys 103:9379–9387

    Article  CAS  Google Scholar 

  116. Zhang ZG, Duan ZH (2004) Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chem Phys 297:221–233

    Article  CAS  Google Scholar 

  117. Annapureddy HVR, Dang LX (2002) Molecular mechanism of specific ion interactions between alkali cations and acetate anion in aqueous solution: a molecular dynamics study. J Phys Chem B 116:7492–7498

    Article  Google Scholar 

  118. Kumar P, Kulkarni AD, Yashonath S (2015) Influence of a counterion on the ion atmosphere of an anion: a molecular dynamics study of LiX and CsX (X = F-, Cl- I-) in methanol. J Phys Chem B 119:10921–10933

    Article  CAS  PubMed  Google Scholar 

  119. Liu W, Wood RH, Doren DJ (2008) Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm3. J Phys Chem B 112:7289–7297

    Article  CAS  PubMed  Google Scholar 

  120. Plugatyr A, Carvajal-Ortiz RA, Svishchev IM (2011) Ion-pair association constant for LiOH in supercritical water. J Chem Eng Data 56:3637–3642

    Article  CAS  Google Scholar 

  121. Yui K, Sakuma M, Funazukuri T (2010) Molecular dynamics simulation on ion-pair association of NaCl from ambient to supercritical water. Fluid Phase Equilib 297:227–235

    Article  CAS  Google Scholar 

  122. He M, Liu X, Lu X, Wang R (2017) Molecular simulation study on K+-Cl- ion-pairing in geological fluids. Acta Geochim 36:1–8

    Article  CAS  Google Scholar 

  123. Smith DE, Dang LX (1994) Interionic potentials of mean force for SrCl2 in polarizable water. A computer simulation study. Chem Phys Lett. 230:209–214

    Article  CAS  Google Scholar 

  124. Cao Z, Peng Y, Li S, Liu L, Yan T (2009) Molecular dynamics simulation of fullerene C60 in ethanol solution. J Phys Chem C 113:3096–3104

    Article  CAS  Google Scholar 

  125. Balbuena PB, Johnston KP, Rossky PJ (1996) Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 2. Relative acidity of HCl. J Phys Chem 100:2716–2722

    Article  CAS  Google Scholar 

  126. Lee SH (2004) Molecular dynamics simulation studies of the limiting conductances of CaCl2 using extended simple point charge and revised polarizable models. Mol Simulat 30:669–678

    Article  CAS  Google Scholar 

  127. Goo GH, Sung G, Lee SH (2004) Molecular dynamics simulation studies of the limiting conductances of MgCl2 and CaCl2 in supercritical water using SPC/E model for water. Mol Simulat 30:37–44

    Article  CAS  Google Scholar 

  128. Fulton JL, Chen Y, Heald SM, Balasubramanian M (2006) Hydration and contact ion pairing of Ca2+ ad Cl in supercritical aqueous solution. J Chem Phys 125:094507

    Article  PubMed  Google Scholar 

  129. Kirkwood JR (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  130. Ciccotti G, Ferrario M, Hynes JT, Karpal R (1989) Constrained molecular dynamics and the mean potential for an ion pair in polar solvent. Chem Phys 129:241–251

    Article  CAS  Google Scholar 

  131. Berne BJ, Tuckerman ME, Straub JE, Bug ALR (1990) Dynamic friction on rigid and flexible bonds. J Chem Phys 93:5084–5095

    Article  CAS  Google Scholar 

  132. Das AK, Tembe BL (1999) Molecular dynamics simulations of sodium chloride solutions in water–dimethyl sulphoxide mixtures: potentials of mean force and solvation structures. J Chem Phys 111:7526–7536

    Article  CAS  Google Scholar 

  133. Trzesniak D, Kunz APE, van Gunsteren WA (2007) Comparison of methods to compute the potential of mean force. Chem Phys Chem 8:162–169

    Article  CAS  PubMed  Google Scholar 

  134. Hess B, Holm C, van der Vegt N (2006) Osmotic coefficients for atomistic NaCl(aq) force fields. J Chem Phys 124:164509

    Article  PubMed  Google Scholar 

  135. Neumann RM (1980) Entropic approach to brownian movement. Am J Phys 48(5):354–357

    Article  CAS  Google Scholar 

  136. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  137. Martínez K, Andrade R, Birgin EG, Martínez JM (2009) Packmol a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  PubMed  Google Scholar 

  138. Humphrey W, Dalke A, Schulten KVMD (1996) Visual molecular dynamics. J Mol Graph 14:33

    Article  CAS  PubMed  Google Scholar 

  139. Patil UN, Keshri S, Tembe BL (2015) Solvation structure of sodium chloride (Na+–Cl−) ion pair in dimethyl sulfoxide-acetonitrile mixture. J Mol Liq 207:279–285

    Article  CAS  Google Scholar 

  140. Patil UN, Tembe BL (2016) Solvation structure of sodium chloride (Na+–Cl) ion pair in acetonitrile (AN)-dimethyl formamide (DMF) mixtures. Mol Simul 42(14):1193–1201

    Article  CAS  Google Scholar 

  141. Dixit MK, Hajari T, Tembe BL (2016) Solvation structures of sodium halides in dimethyl sulfoxide (DMSO)-methanol (MeOH) mixtures. Mol Simul 43:154–168

    Article  Google Scholar 

  142. Siddique AA, Dixit MK, Tembe BL (2013) Solvation structure and dynamics of potassium chloride ion pair in dimethyl sulfoxide-water mixtures. J Mol Liq 2013(188):5–12

    Article  Google Scholar 

  143. Patil UN, Tembe BL (2020) Solvation structures of Na+–Cl ion pair in DMF-water and DMF-methanol mixtures. Mol Simul 46:766–776

    Article  CAS  Google Scholar 

  144. Dixit MK, Tembe BL (2012) Potentials of mean force of sodium chloride ion pair in dimethyl sulfoxide-methanol mixtures. J Mol Liq 178:78–83

    Article  Google Scholar 

  145. Chialvo AA, Cummings PT, Cochran HD, Simonson JM, Mesmer RE (1995) Na+–Cl ion-pair association in supercritical water. J Chem Phys 103:9379–9387

    Article  CAS  Google Scholar 

  146. Feng-chun H, Gilkerson WR (1983) Ion association of lithium bromide, chloride and picrate and of sodium picrate in 2-propanol at 25 °C. I. Conductance measurements. J Solut Chem 12(3):161–170

    Article  Google Scholar 

  147. Roy MN, Banerjee A, Das RK (2004) Conductometric study of some alkali metal halides in (dimethyl sulfoxide-acetonitrile) at T = 298.15 K. J Chem Thermodyn 41:1187–1192

    Article  Google Scholar 

  148. Gujt J, Rogač MB, Lee BH (2014) An investigation of ion-pairing in aqueous solutions using the electrical conductivity and the Monte Carlo computer simulation methods. J Mol Liq 190:34–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hoshina T, Tsuchihashi N, Ibuki K, Ueno M (2004) Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature I NaCl, KCl, and CsCl solutions. J Chem Phys 120:4355–4365

    Article  CAS  PubMed  Google Scholar 

  150. Evars EC, Knox AG (1951) Conductivity studies in methanol. J Am Chem Soc 73:1739–1744

    Article  Google Scholar 

  151. Barthel J, Krell M, Iberl L, Feuerlein F (1986) Conductance of 1–1 electrolytes in methanol from − 45 to 23 °C. J Electroanal Chem 214:485–505

    Article  CAS  Google Scholar 

  152. Jervis RE, Muir DR, Butler JP, Gordon AR (1953) The conductance at 25 °C of lithium chloride, sodium and potassium bromides and potassium iodide in methanol, and of lithium chloride, sodium bromide and potassium iodide in water. J Am Chem Soc 75:2855–2858

    Article  CAS  Google Scholar 

  153. Akrawi BA, Khalil SM, Dawood AM (2006) The electrical conductivity of potassium halides in methanol at different temperatures. Rafidain J Sci 2006(17):68–75

    Google Scholar 

  154. Kay RL, Hawes JL (1965) The association of cesium chloride in anhydrous methanol at 25°. J Phys Chem 69:2787–2788

    Article  CAS  Google Scholar 

  155. Fiates J, Zhang Y, Franco L, Maginn EJ, Doubek G (2020) Impact of anion shape on Li+ solvation and on transport properties for lithium-air batteries: a molecular dynamics study. Phys Chem Chem Phys 22:15842–15852

    Article  CAS  PubMed  Google Scholar 

  156. Gorobets MI, Ataev MB, Gafurov MM, Kirillov SA (2016) Speciation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate from Raman data: a minireview. J. Spectrosc 2016:1–12

    Article  Google Scholar 

  157. Megyes T, Bakó I, Radnai I, Grósz T, Kosztolányi T, Mroz B, Probst M (2006) Structural investigation of lithium iodide in liquid dimethyl sulfoxide: comparison between experiment and computation. Chem Phys 321:100–110

    Article  CAS  Google Scholar 

  158. Kalugin ON, Adya AA, Volobuev MN, Kolesnik YV (2003) Solvation of solvophilic and solvophobic ions in dimethyl sulfoxide: microscopic structure by molecular dynamics simulations. Phys Chem Chem Phys 5:1536–1546

    Article  CAS  Google Scholar 

  159. Kloss AA, Fawcett WR (1998) ATR-FTIR studies of ionic solvation and ion-pairing in dimethyl sulfoxide solutions of the alkali metal nitrates. J Chem Soc Faraday Trans 94:1587–1591

    Article  CAS  Google Scholar 

  160. Markarian AA, Stokhausen M (2000) A dielectric relaxation study of lithium salt solutions in dimethylsulfoxide. Z Phys Chem 0214:139–147

    Article  CAS  Google Scholar 

  161. Zeng Y, Wang C, Zhang X, Ju S (2014) Solvation structure and dynamics of Li+ ion in liquid water, methanol and ethanol: a comparison study. Chem Phys 433:89–97

    Article  CAS  Google Scholar 

  162. Kerisit S, Vijayakumar M, Han KS, Mueller KT (2015) Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields. J Chem Phys. 142:224502

    Article  PubMed  Google Scholar 

  163. Pagliai M, Cardini G, Schettino V (2005) Solvation dynamics of Li+ and Cl- ions in liquid methanol. J Phys Chem B 109:7475–7481

    Article  CAS  PubMed  Google Scholar 

  164. Faralli C, Pagliai M, Cardini G, Schettino V (2007) The solvation dynamics of Na+ and K+ ions in liquid methanol. Theor Chem Acc 118:417–423

    Article  CAS  Google Scholar 

  165. Megyes T, Radnai I, Grósz T, Pálinkás G (2002) X-ray diffraction study of lithium halides in methanol. J Mol Liq 101(1–3):3–18

    Article  CAS  Google Scholar 

  166. Wu C-C, Wang Y-S, Chandhuri C, Jiang JC, Chang H-C (2004) Microsolvation of the lithium ion by methanol in the gas phase. Chem Phys Lett 388:457–462

    Article  CAS  Google Scholar 

  167. Chowdhuri S, Chandra A (2006) Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions. J Chem Phys 124:084507

    Article  PubMed  Google Scholar 

  168. Gopal R, Husain HM (1963) J Indian Chem Soc 40:981

    CAS  Google Scholar 

  169. Allam DS, Lee WH (1966) Ultrasonic studies in electrolyte solutions. Part III. The hydration numbers of some acids, alkalis, and tetra-alkyl ammonium salts. J Chem Soc A 1966:426–428

    Article  Google Scholar 

  170. Rao BG, Singh UC (1990) A free energy perturbation study of solvation in methanol and dimethyl sulfoxide. J Am Chem Soc 112:3803–3811

    Article  CAS  Google Scholar 

  171. Madhusoodanan M, Tembe BL (1995) Structure and dynamics of Na+–Na+, Na+–Cl-, and Cl-–Cl- ion pairs in DMSO. J Phys Chem 99:44–50

    Article  CAS  Google Scholar 

  172. Marrone TJ, Merz KM Jr (1993) Transferability of ion models. J Phys Chem 97:6524–6529

    Article  CAS  Google Scholar 

  173. Kim HS (2001) Solvent effect on K+ to Na+ ion mutation: a Monte Carlo simulation study. J Mol Struct (Theochem) 540:79–89

    Article  CAS  Google Scholar 

  174. Bertagnolli H, Schultz E (1989) The local order in liquid dimethylsulfoxide and KI-dimethylsulfoxide solution determined by X-ray and neutron diffraction experiments. Ber Bunsenges Phys Chem 93:88–95

    Article  CAS  Google Scholar 

  175. Kumar P, Kulkarni AD, Yashonath S (2015) Influence of a counterion on the ion atmosphere of an anion: a molecular dynamics study of LiX and CsX (X = Cl-, F-, I-) in methanol. J Phys Chem B 119:10921–10933

    Article  CAS  PubMed  Google Scholar 

  176. Impey RW, Sprik M, Klein ML (1987) Ionic solvation in non-aqueous solvents: the structure of lithium ion and chloride in methanol, ammonia, and methylamine. J Am Chem Soc 109:5900–5904

    Article  CAS  Google Scholar 

  177. Sese´ G, Guàrdia E, Padro´ JA (1996) Molecular dynamics study of Na+ and Cl- in methanol. J Chem Phys. 105 (19): 8826-8834

  178. Megyes T, Radnai T, Wakisaka A (2002) Complementary relation between ion-counter-ion and ion-solvent interaction in lithium halide-methanol solutions. J Phys Chem A 106:8059–8065

    Article  CAS  Google Scholar 

  179. Cabarcos OM, Weinheimer CJ, Martínez TJ, Lisy JM (1999) The solvation of chloride by methanol-surface versus interior cluster ion states. J Chem Phys 110:9516–9526

    Article  CAS  Google Scholar 

  180. Ozutsumi K, Ohtaki H (2004) Application of a compact synchrotron radiation facility to studies on the structure of solvated chloride and iodide ions in various solvents. Pure Appl Chem 76:91–96

    Article  CAS  Google Scholar 

  181. Adya AK, Kalugin ON (2000) Microscopic structure of Cl- coordination shell in NiCl2 methanol solution: a neutron diffraction study. J Chem Phys 13:4740–4750

    Article  Google Scholar 

  182. Laasonen K, Klein ML (1994) Ab-inito molecular dynamics study of hydrochloric acid in water. J Am Chem Soc 116:11620–11621

    Article  CAS  Google Scholar 

  183. Laasonen KE, Klein ML (1997) Ab-initio study of aqueous hydrochloric acid. J Phys Chem A 101:98–102

    Article  CAS  Google Scholar 

  184. Heuft JM, Meijer EJ (2003) Density functional theory based molecular-dynamics study of aqueous chloride solvation. J Chem Phys 119:11788–11791

    Article  CAS  Google Scholar 

  185. Pagliai M, Raugei S, Cardini G, Schettino V (2003) Car-Parrinello molecular dynamics on the SN2 reaction Cl–CH3Br in water. J Mol Struct (Theochem) 630(1–3):141–149

    Article  CAS  Google Scholar 

  186. Gutmann V (1976) Electrical parameters for donor and acceptor properties of solvents. Electrochim Acta 21:661–670

    Article  CAS  Google Scholar 

  187. Sarkar A, Chatterjee A, Tiwari SC, Tembe BL (2016) Na+Cl- ion pair association in water-DMSO mixtures: effect of ion pair model potentials. J Chem Sci 2016(128):1003–1010

    Article  Google Scholar 

  188. Waluyo I, Nordlund D, Bergmann U, Schlesinger D, Pettersson LGM, Nilsson AA (2014) different view of structure-making and structure-breaking in alkali halide aqueous solutions through X-ray absorption spectroscopy. J Chem Phys 140:244506

    Article  PubMed  Google Scholar 

  189. Harsányi I, Pusztai L (2005) On the structure of aqueous LiCl solutions. J Chem Phys 122:124512

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our grateful thanks to IIT Bombay for providing us with the High performance Computing Facility. U. N. P. thanks the Department of Chemistry, Fergusson College, Pune, and S. K. thanks the Chemistry Department of Jyoti Nivas College Autonomous, Bangalore. We would like to express our heartfelt gratitude to Ratish Shekhar for helping us out with computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujwala N. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10980 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, U.N., Keshri, S. & Tembe, B.L. Alkali metal chlorides in DMSO–methanol binary mixtures: insights into the structural properties through molecular dynamics simulations. Theor Chem Acc 140, 157 (2021). https://doi.org/10.1007/s00214-021-02856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02856-4

Keywords

Navigation