Skip to main content
Log in

Hydrogen bonding mediated ion pairs of some aprotic ionic liquids and their structural transition in aqueous solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ion pair speciation of ionic liquids (ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR (FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic (MD) simulation and nuclear magnetic resonance hydrogen spectroscopy (1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO3], [BuPy][NO3], [Pyr14][NO3], [PP14][NO3] and [Bu-choline][NO3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory (DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction (say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water (say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions (fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions (fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and 1H NMR results support the conclusion drawn from FIR spectra investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J. Chem Soc Rev, 2014, 43: 7838–7869

    Article  CAS  Google Scholar 

  2. Zhang L, Dong K, Chen S, Zhang S. Sci China Chem, 2016, 59: 547–550

    Article  CAS  Google Scholar 

  3. Chen S, Zhang S, Liu X, Wang J, Wang J, Dong K, Sun J, Xu B. Phys Chem Chem Phys, 2014, 16: 5893–5906

    Article  CAS  Google Scholar 

  4. Zhu Q, Ma J, Kang X, Sun X, Hu J, Yang G, Han B. Sci China Chem, 2016, 59: 551–556

    Article  CAS  Google Scholar 

  5. Hayes R, Warr GG, Atkin R. Chem Rev, 2015, 115: 6357–6426

    Article  CAS  Google Scholar 

  6. Dupont J. Acc Chem Res, 2011, 44: 1223–1231

    Article  CAS  Google Scholar 

  7. Neto BAD, Meurer EC, Galaverna R, Bythell BJ, Dupont J, Cooks RG, Eberlin MN. J Phys Chem Lett, 2012, 3: 3435–3441

    Article  CAS  Google Scholar 

  8. Marcus Y, Hefter G. Chem Rev, 2006, 106: 4585–4621

    Article  CAS  Google Scholar 

  9. Dupont J. J Braz Chem Soc, 2004, 15: 341–350

    Article  CAS  Google Scholar 

  10. Zahn S, Uhlig F, Thar J, Spickermann C, Kirchner B. Angew Chem Int Ed, 2008, 47: 3639–3641

    Article  CAS  Google Scholar 

  11. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M. J Phys Chem B, 2005, 109: 16474–16481

    Article  CAS  Google Scholar 

  12. Fumino K, Reimann S, Ludwig R. Phys Chem Chem Phys, 2014, 16: 21903–21929

    Article  CAS  Google Scholar 

  13. Fumino K, Ludwig R. J Mol Liq, 2014, 192: 94–102

    Article  CAS  Google Scholar 

  14. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J. J Phys Chem B, 2005, 109: 4341–4349

    Article  CAS  Google Scholar 

  15. Sadeghi R, Ebrahimi N. J Phys Chem B, 2011, 115: 13227–13240

    Article  CAS  Google Scholar 

  16. Li W, Zhang Z, Han B, Hu S, Xie Y, Yang G. J Phys Chem B, 2007, 111: 6452–6456

    Article  CAS  Google Scholar 

  17. Katsuta S, Imai K, Kudo Y, Takeda Y, Seki H, Nakakoshi M. J Chem Eng Data, 2008, 53: 1528–1532

    Article  CAS  Google Scholar 

  18. Dorbritz S, Ruth W, Kragl U. Adv Synth Catal, 2005, 347: 1273–1279

    Article  CAS  Google Scholar 

  19. Gozzo FC, Santos LS, Augusti R, Consorti CS, Dupont J, Eberlin MN. Chem Eur J, 2004, 10: 6187–6193

    Article  CAS  Google Scholar 

  20. Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T. J Phys Chem B, 2007, 111: 598–604

    Article  CAS  Google Scholar 

  21. Neto B, Ebeling G, Goncalves R, Gozzo F, Eberlin M, Dupont J. Synthesis, 2004: 1155–1158

    Google Scholar 

  22. Avent AG, Chaloner PA, Day MP, Seddon KR, Welton T. J Chem Soc Dalton Trans, 1994: 3405–3413

    Google Scholar 

  23. Mele A, Tran CD, De Paoli Lacerda SH. Angew Chem Int Ed, 2003, 42: 4364–4366

    Article  CAS  Google Scholar 

  24. Scharf NT, Stark A, Hoffmann MM. J Solution Chem, 2013, 42: 2034–2056

    Article  CAS  Google Scholar 

  25. Zheng YZ, Wang NN, Luo JJ, Zhou Y, Yu ZW. Phys Chem Chem Phys, 2013, 15: 18055–18064

    Article  CAS  Google Scholar 

  26. Bešter-Rogač M, Stoppa A, Hunger J, Hefter G, Buchner R. Phys Chem Chem Phys, 2011, 13: 17588–17598

    Article  Google Scholar 

  27. Stoppa A, Hunger J, Hefter G, Buchner R. J Phys Chem B, 2012, 116: 7509–7521

    Article  CAS  Google Scholar 

  28. Batista MLS, Kurnia KA, Pinho SP, Gomes JRB, Coutinho JAP. J Phys Chem B, 2015, 119: 1567–1578

    Article  CAS  Google Scholar 

  29. Roohi H, Khyrkhah S. Comp Theor Chem, 2014, 1037: 70–79

    Article  CAS  Google Scholar 

  30. Zhang L, Xu Z, Wang Y, Li H. J Phys Chem B, 2008, 112: 6411–6419

    Article  CAS  Google Scholar 

  31. Zanatta M, Girard AL, Simon NM, Ebeling G, Stassen HK, Livotto PR, dos Santos FP, Dupont J. Angew Chem Int Ed, 2014, 53: 12817–12821

    Article  CAS  Google Scholar 

  32. Yaghini N, Pitawala J, Matic A, Martinelli A. J Phys Chem B, 2015, 119: 1611–1622

    Article  CAS  Google Scholar 

  33. Yaghini N, Nordstierna L, Martinelli A. Phys Chem Chem Phys, 2014, 16: 9266–9275

    Article  CAS  Google Scholar 

  34. Ren Z, Brinzer T, Dutta S, Garrett-Roe S. J Phys Chem B, 2015, 119: 4699–4712

    Article  CAS  Google Scholar 

  35. Strauch M, Roth C, Kubatzki F, Ludwig R. ChemPhysChem, 2014, 15: 265–270

    Article  CAS  Google Scholar 

  36. Fumino K, Stange P, Fossog V, Hempelmann R, Ludwig R. Angew Chem Int Ed, 2013, 52: 12439–12442

    Article  CAS  Google Scholar 

  37. Pierola IF, Agzenai Y. J Phys Chem B, 2012, 116: 3973–3981

    Article  CAS  Google Scholar 

  38. Fumino K, Wulf A, Ludwig R. Angew Chem Int Ed, 2008, 47: 8731–8734

    Article  CAS  Google Scholar 

  39. Wulf A, Fumino K, Ludwig R. Angew Chem Int Ed, 2010, 49: 449–453

    Article  CAS  Google Scholar 

  40. Fumino K, Reichert E, Wittler K, Hempelmann R, Ludwig R. Angew Chem Int Ed, 2012, 51: 6236–6240

    Article  CAS  Google Scholar 

  41. Fumino K, Wulf A, Ludwig R. Angew Chem Int Ed, 2009, 48: 3184–3186

    Article  CAS  Google Scholar 

  42. Fumino K, Wulf A, Ludwig R. Angew Chem Int Ed, 2008, 47: 3830–3834

    Article  CAS  Google Scholar 

  43. Roth C, Peppel T, Fumino K, Köckerling M, Ludwig R. Angew Chem Int Ed, 2010, 49: 10221–10224

    Article  CAS  Google Scholar 

  44. Stassen HK, Ludwig R, Wulf A, Dupont J. Chem Eur J, 2015, 21: 8324–8335

    Article  CAS  Google Scholar 

  45. Stange P, Fumino K, Ludwig R. Angew Chem Int Ed, 2013, 52: 2990–2994

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. Gaussian 09. Revision D.01. Wallingford, CT: Gaussian, Inc., 2009

    Google Scholar 

  47. Boys SF, Bernardi F. Mol Phys, 1970, 19: 553–566

    Article  CAS  Google Scholar 

  48. Liu X, Zhou G, Zhang S, Wu G, Yu G. J Phys Chem B, 2007, 111: 5658–5668

    Article  CAS  Google Scholar 

  49. Freire MG, Neves CMSS, Shimizu K, Bernardes CES, Marrucho IM, Coutinho JAP, Canongia Lopes JN, Rebelo LPN. J Phys Chem B, 2010, 114: 15925–15934

    Article  CAS  Google Scholar 

  50. Wu Y, Tepper HL, Voth GA. J Chem Phys, 2006, 124: 024503–024503

    Article  Google Scholar 

  51. Lyubartsev AP, Laaksonen A. Comp Phys Commun, 2000, 128: 565–589

    Article  CAS  Google Scholar 

  52. Tuckerman M, Berne BJ, Martyna GJ. J Chem Phys, 1992, 97: 1990–2001

    Article  CAS  Google Scholar 

  53. Leeuw SWD, Perram JW, Smith ER. Proc R Soc A-Math Phys Eng Sci, 1983, 388: 177–193

    Article  Google Scholar 

  54. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Mol Phys, 1996, 87: 1117–1157

    Article  CAS  Google Scholar 

  55. Köddermann T, Klembt S, Klasen D, Paschek D, Kragl U, Ludwig R. ChemPhysChem, 2012, 13: 1748–1752

    Article  Google Scholar 

  56. Zhao Y, Wang J, Wang H, Li Z, Liu X, Zhang S. J Phys Chem B, 2015, 119: 6686–6695

    Article  CAS  Google Scholar 

  57. Koch W, Holthausen MC. A Chemist’s Guide to Density Functional Theory. 2nd Ed. Weinheim: Wiley-VCH Verlag GmbH, 2001

    Book  Google Scholar 

  58. Zhao Y, Gao S, Wang J, Tang J. J Phys Chem B, 2008, 112: 2031–2039

    Article  CAS  Google Scholar 

  59. Karve L, Dutt GB. J Phys Chem B, 2012, 116: 1824–1830

    Article  CAS  Google Scholar 

  60. Remsing RC, Liu Z, Sergeyev I, Moyna G. J Phys Chem B, 2008, 112: 7363–7369

    Article  CAS  Google Scholar 

  61. Singh T, Kumar A. J Phys Chem B, 2007, 111: 7843–7851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21573060, 21673068), Program for Innovative Research Team in Science and Technology in University of Henan Province (16IRTSTHN002), Plan for Scientific Innovation Talent of Henan Province (144200510004) and The High Performance Computing Center of Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhao or Jianji Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, M., Zhao, Y. et al. Hydrogen bonding mediated ion pairs of some aprotic ionic liquids and their structural transition in aqueous solution. Sci. China Chem. 60, 970–978 (2017). https://doi.org/10.1007/s11426-016-0389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0389-4

Keywords

Navigation