Skip to main content
Log in

Which triel bond is stronger? TrHX⋯H2Y versus TrH2X⋯H2Y (Tr = Ga, In; X = F, Cl, Br, I; Y = O, S)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Triel bond, a recent emerging noncovalent interaction, has attracted extensive attention from physical and chemical scientists. Some triel atoms, such as Ga and In atoms, theirs valence, can be bivalent, trivalent, and even tetravalent. What is the influence of the valence of triel atom on the triel-bonding formation? This issue generates our initial research interest. Then, the influence of valence of triel atom on the triel bond has been theoretically investigated in thirty-two complexes composed by Lewis acids TrHX/TrH2X (Tr = Ga, In; X = F, Cl, Br, I) and Lewis base H2Y (Y = O, S) molecules at MP2/aug‐cc‐pVTZ(PP) theory level. MEP analyses show that both TrHX and TrH2X molecules possess π-holes on Tr atoms, which can be used as Lewis acids, and interact with Lewis bases to form triel bonds. AIM and Non-covalent interaction (NCI) analyses demonstrate that triel bond exists in all the studied thirty-two complexes. Hydrogen bond coexists with triel bond only in six of these complexes. In the process of triel bond formation, TrH2X molecule has stronger structural distortion than TrHX molecule. And TrH2X molecule can form a stronger triel bond than that of TrHX molecule by analyzing multiple factors that affect triel-bonding formation including substituents, electron donors, and nature of triel atoms. In addition, NBO analyses show that triel bond in TrH2X–H2Y complexes has stronger orbital interaction than that in TrHX–H2Y complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grabowski SJ (2019) Bifurcated triel bonds-hydrides and halides of 1,2-bis(dichloroboryl)benzene and 1,8-bis(dichloroboryl)naphthalene. Curr Comput Aided Drug Des 9:503

    Google Scholar 

  2. Chval Z, Dvorackova O, Chvalova D, Burda JV (2019) Square-planar Pt(II) and Ir(I) complexes as the lewis bases: donor–acceptor adducts with group 13 trihalides and trihydrides. Inorg Chem 58:3616–3626

    Article  CAS  PubMed  Google Scholar 

  3. Escudero-Adan EC, Bauza A, Lecomte C, Frontera A, Ballester P (2018) Boron triel bonding: a weak electrostatic interaction lacking electron-density descriptors. Phys Chem Chem Phys 20:24192–24200

    Article  CAS  PubMed  Google Scholar 

  4. Frontera A, Bauza A (2017) Concurrent aerogen bonding and lone pair/anion-pi interactions in the stability of organoxenon derivatives: a combined CSD and ab initio study. Phys Chem Chem Phys 19:30063–30068

    Article  CAS  PubMed  Google Scholar 

  5. Echeverria J (2017) Alkyl groups as electron density donors in pi-hole bonding. CrystEngComm 19:6289–6296

    Article  CAS  Google Scholar 

  6. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  PubMed  Google Scholar 

  7. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  8. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  PubMed  Google Scholar 

  9. Murray JS, Lane P, Politzer P (2009) Expansion of the sigma-hole concept. J Mol Model 15:723–729

    Article  CAS  PubMed  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  PubMed  Google Scholar 

  11. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) sigma-Holes, pi-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  12. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other sigma-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  13. Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015) Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te). Chem Phys Lett 620:7–12

    Article  CAS  Google Scholar 

  14. Wei YX, Li QZ, Scheiner S (2018) The pi-Tetrel bond and its influence on hydrogen bonding and proton transfer. Chem Phys Chem 19:736–743

    Article  CAS  PubMed  Google Scholar 

  15. Grabowski SJ (2014) Boron and other triel lewis acid centers: from hypovalency to hypervalency. Chem Phys Chem 15:2985–2993

    Article  CAS  PubMed  Google Scholar 

  16. Wang WZ, Ji BM, Zhang Y (2009) Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. J Phys Chem A 113:8132–8135

    Article  PubMed  Google Scholar 

  17. Azofra LM, Alkorta I, Scheiner S (2014) Noncovalent interactions in dimers and trimers of SO3 and CO. Theor Chem Acc 133:1586

    Article  Google Scholar 

  18. Pascoe DJ, Ling KB, Cockroft SL (2017) The origin of chalcogen-bonding interactions. J Am Chem Soc 139:15160–15167

    Article  CAS  PubMed  Google Scholar 

  19. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: A new molecular linker? Chem Eur J 17:6034–6038

    Article  CAS  PubMed  Google Scholar 

  20. Bauza A, Ramis R, Frontera A (2014) A combined theoretical and cambridge structural database study of pi-Hole Pnicogen bonding complexes between electron rich molecules and both nitro compounds and inorganic bromides (YO2Br, Y = N, P and As). J Phys Chem A 118:2827–2834

    Article  CAS  PubMed  Google Scholar 

  21. Bauza A, Mooibroek TJ, Frontera A (2015) Directionality of pi-holes in nitro compounds. ChemComm 51:1491–1493

    CAS  Google Scholar 

  22. Bauza A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52:12317–12321

    Article  CAS  Google Scholar 

  23. Bauza A, Mooibroek TJ, Frontera A (2016) Tetrel bonding interactions. Chem Rec 16:473–487

    Article  CAS  PubMed  Google Scholar 

  24. Scheiner S (2017) Systematic elucidation of factors that influence the strength of tetrel bonds. J Phys Chem A 121:5561–5568

    Article  CAS  PubMed  Google Scholar 

  25. Alkorta I, Elguero J, Frontera A (2020) Not only hydrogen bonds: other noncovalent interactions. Curr Comput-Aided Drug Des 10:180

    CAS  Google Scholar 

  26. Grabowski SJ (2017) Hydrogen bonds, and sigma-hole and pi-hole bonds—mechanisms protecting doublet and octet electron structures. Phys Chem Chem Phys 19:29742–29759

    Article  CAS  PubMed  Google Scholar 

  27. Grabowski SJ (2015) pi-Hole bonds: boron and aluminum lewis acid centers. Chem Phys Chem 16:1470–1479

    Article  CAS  PubMed  Google Scholar 

  28. Gao L, Zeng YL, Zhang XY, Meng LP (2016) Comparative studies on group iii sigma-hole and pi-hole interactions. J Comput Chem 37:1321–1327

    Article  CAS  PubMed  Google Scholar 

  29. Xu HL, Cheng JB, Yang X, Liu ZB, Li WZ, Li QZ (2017) Comparison of sigma-hole and -hole tetrel bonds formed by pyrazine and 1,4-dicyanobenzene: the interplay between anion- and tetrel bonds. Chem Phys Chem 18:2442–2450

    Article  CAS  PubMed  Google Scholar 

  30. Dong WB, Yang X, Cheng JB, Li WZ, Li QZ (2018) Comparison for sigma-hole and pi-hole tetrel-bonded complexes involving F2C=CFTF3 (T=C, Si, and Ge): substitution, hybridization, and solvation effects. J Fluor Chem 207:38–44

    Article  CAS  Google Scholar 

  31. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Comparison between tetrel bonded complexes stabilized by sigma and pi hole interactions. Molecules 23:1416

    Article  PubMed Central  Google Scholar 

  32. Nziko VDN, Scheiner S (2016) Comparison of pi-hole tetrel bonding with sigma-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3. Phys Chem Chem Phys 18:3581–3590

    Article  CAS  Google Scholar 

  33. T.A. Ford (2020) The structural, vibrational and electronic properties of the triel-bonded complexes of boron trifluoride with some cyclic ethers—an ab initio study. J Mol Struct 1210:128020

  34. Zierkiewicz W, Michalczyk M, Scheiner S (2020) Competition between intra and intermolecular triel bonds. Complexes between naphthalene derivatives and neutral or anionic Lewis bases. Molecules 25:635

    Article  PubMed Central  Google Scholar 

  35. Brinck T, Murray JS, Politzer P (1993) A computational analysis of the bonding in boron-trifluoride and boron-trichloride and their complexes with ammonia. Inorg Chem 32:2622–2625

    Article  CAS  Google Scholar 

  36. Rowsell BD, Gillespie FJ, Heard GL (1999) Ligand close-packing and the Lewis acidity of BF3 and BCl3. Inorg Chem 38:4659–4662

    Article  CAS  PubMed  Google Scholar 

  37. Chi ZQ, Li QZ, Li HB (2019) Comparison of triel bonds with different chalcogen electron donors: Its dependence on triel donor and methyl substitution. Int J Quantum Chem 120:26046

    Google Scholar 

  38. Jablonski M (2018) Hydride-triel bonds. J Comput Chem 39:1177–1191

    Article  CAS  PubMed  Google Scholar 

  39. Zhang JR, Wei YX, Li WZ, Cheng JB, Li QZ (2018) Triel-hydride triel bond between ZX(3) (Z = B and Al; X = H and Me) and THMe3 (T = Si, Ge and Sn). Appl Organomet Chem 32:4367

    Article  Google Scholar 

  40. Grabowski SJ (2015) Triel bonds, pi-Hole-pi-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules 20:11297–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Esrafili MD, Mohammadian-Sabet F (2016) Theoretical insights into nature of pi-hole interactions between triel centers (B and Al) and radical methyl as a potential electron donor: Do single-electron triel bonds exist? Struct Chem 27:1157–1164

    Article  CAS  Google Scholar 

  42. Chi ZQ, Dong WB, Li QZ, Yang X, Scheiner S, Liu SF (2019) Carbene triel bonds between TrR3 (Tr = B, Al) and N-heterocyclic carbenes. Int J Quantum Chem 119:25867

    Article  Google Scholar 

  43. Fiacco DL, Leopold KR (2003) Partially bound systems as sensitive probes of microsolvation: a microwave and ab initio study of HCN center dot center dot center dot HCN-BF3. J Phys Chem A 107:2808–2814

    Article  CAS  Google Scholar 

  44. Zhang JR, Li WZ, Cheng JB, Liu ZB, Li QZ (2018) Cooperative effects between pi-hole triel and pi-hole chalcogen bonds. Rsc Adv 8:26580–26588

    Article  CAS  Google Scholar 

  45. Tang QJ, Li QZ (2015) Abnormal synergistic effects between Lewis acid- base interaction and halogen bond in F3B center dot center dot center dot NCX center dot center dot center dot NCM. Mol Phys 113:3809–3814

    Article  CAS  Google Scholar 

  46. Yourdkhani S, Korona T, Hadipour NL (2015) Interplay between tetrel and triel bonds in RC6H4CN center dot center dot center dot MF3CN center dot center dot center dot BX3 complexes: a combined symmetry-adapted perturbation theory, moller-plesset, and quantum theory of atoms-in-molecules study. J Comput Chem 36:2412–2428

    Article  CAS  PubMed  Google Scholar 

  47. Zhang JR, Wang ZX, Liu SF, Cheng JB, Li WZ, Li QZ (2019) Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between pi-hole and sigma-hole. Appl Organomet Chem 33:4806

    Article  Google Scholar 

  48. Liu MX, Zhuo HY, Li QZ, Li WZ, Cheng JB (2016) Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3 center dot center dot center dot NCXH2 center dot center dot center dot Y (X = P, As, Sb; Y = H2O, NH3) complexes. J Mol Model 22:10

    Article  PubMed  Google Scholar 

  49. Esrafili MD, Mousavian P (2018) The triel bond: a potential force for tuning anion-pi interactions. Mol Phys 116:388–398

    Article  CAS  Google Scholar 

  50. Esrafili MD, Mousavian P (2017) Mutual influence between triel bond and cation-pi interactions: an ab initio study. Mol Phys 115:2999–3010

    Article  CAS  Google Scholar 

  51. Michalczyk M, Zierkiewicz W, Scheiner S (2018) Triel-bonded complexes between TrR3 (Tr=B, Al, Ga; R=H, F, Cl, Br, CH3) and Pyrazine. Chem Phys Chem 19:3122–3133

    Article  CAS  PubMed  Google Scholar 

  52. Xu Z, Li Y (2019) Triel bonds in RZH2…NH3: hybridization, solvation, and substitution. J Mol Model 25:219

    Article  PubMed  Google Scholar 

  53. Grabowski SJ (2018) Two faces of triel bonds in boron trihalide complexes. J Comput Chem 39:472–480

    Article  CAS  PubMed  Google Scholar 

  54. Grabowski SJ (2017) Triel bonds-complexes of boron and aluminum trihalides and trihydrides with benzene. Struct Chem 28:1163–1171

    Article  CAS  Google Scholar 

  55. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  56. Woon DE, Dunning TH (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  57. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553–566, 1970). Mol Phys 100:65–73

    Article  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, D.J. Fox Gaussian 09 Revision D.01, Gaussian Inc. Wallingford CT (2013)

  59. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  60. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  61. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 11404268, 11774294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Y., Wang, H. et al. Which triel bond is stronger? TrHX⋯H2Y versus TrH2X⋯H2Y (Tr = Ga, In; X = F, Cl, Br, I; Y = O, S). Theor Chem Acc 140, 80 (2021). https://doi.org/10.1007/s00214-021-02790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02790-5

Keywords

Navigation