Skip to main content

Advertisement

Log in

The C–H bond activation by non-heme oxidant [(N4Py)FeIV(O)]2+ with external electric field

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The C–H bond activation by non-heme iron-oxo species is one of the most interesting fundamental steps in organic oxidation reactions. This work focuses on the C–H bond activation by an external electric field (EEF) in a non-heme complex. The hydrogen atom abstraction from 2,5-(MeO)2C6H3CH2OH by [(N4Py)FeIV(O)]2+ utilizing an EEF was studied using density functional theory. Our analysis suggests that the mechanism of this process can be characterized as a mixture of hydrogen atom transfer and concerted-asynchronous electron–proton transfer that can be modulated by the EEF. Our study demonstrates an EEF that decreases the reaction barrier by increasing the electron donor orbital energy, which facilitates electron transfer. The reaction finally becomes barrierless when the EEF is greater than 0.0045au. The finding from this work demonstrates the exciting possibility of tuning the reaction mechanism using the EEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He C, Mishina Y (2004) Modeling non-heme iron proteins. Curr Opin Chem Biol 8(2):201–208

    Article  CAS  PubMed  Google Scholar 

  2. Cook GK, Mayer JM (1995) C–H bond activation by metal oxo species: chromyl chloride oxidations of cyclooctane, isobutane, and toluene. J Am Chem Soc 117(27):7139–7156

    Article  CAS  Google Scholar 

  3. Kumar D, Hirao H, Que L, Shaik S (2005) Theoretical investigation of C–H hydroxylation by (N4Py) FeIV O2+: an oxidant more powerful than P450? J Am Chem Soc 127(22):8026–8027

    Article  CAS  PubMed  Google Scholar 

  4. Balcells D, Clot Eric, Eisenstein Odile (2010) C–H bond activation in transition metal species from a computational perspective. Chem Rev 110(2):749–823

    Article  CAS  PubMed  Google Scholar 

  5. Yang T, Quesne MG, Neu HM, Cantu Reinhard FG, Goldberg DP, de Visser SP (2016) Singlet versus triplet reactivity in an Mn(V)-oxo species: testing theoretical predictions against experimental evidence. J Am Chem Soc 138(38):12375–12386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantu Reinhard FG, Faponle AS, de Visser SP (2016) Substrate sulfoxidation by an iron(IV)-oxo complex: benchmarking computationally calculated barrier heights to experiment. The journal of physical chemistry A 120(49):9805–9814

    Article  CAS  PubMed  Google Scholar 

  7. Hirao H, Que L Jr, Nam W, Shaik S (2008) A two-state reactivity rationale for counterintuitive axial ligand effects on the C–H activation reactivity of nonheme FeIV = O oxidants. Chem Eur J 14(6):1740–1756

    Article  CAS  PubMed  Google Scholar 

  8. Janardanan D, Wang Y, Schyman P, Que L Jr, Shaik S (2010) The fundamental role of exchange-enhanced reactivity in C–H activation by S = 2 oxo iron (IV) complexes. Angew Chem Int Ed 49(19):3342–3345

    Article  CAS  Google Scholar 

  9. Nam W (2007) High-valent iron (IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc Chem Res 40(7):522–531

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Lai W, Shaik S (2010) Exchange-enhanced H-abstraction reactivity of high-valent nonheme iron (IV)-oxo from coupled cluster and density functional theories. J Phys Chem Lett 1(10):1533–1540

    Article  CAS  Google Scholar 

  11. Fukuzumi S, Kotani H, Suenobu T, Hong S, Lee YM, Nam W (2010) Contrasting effects of axial ligands on electron-transfer versus proton-coupled electron-transfer reactions of nonheme oxoiron (IV) complexes. Chem Eur J 16(1):354–361

    Article  CAS  PubMed  Google Scholar 

  12. Comba P, Fukuzumi S, Kotani H, Wunderlich S (2010) Electron-transfer properties of an efficient nonheme iron oxidation catalyst with a tetradentate bispidine ligand. Angew Chem 49(14):2622–2625

    Article  CAS  Google Scholar 

  13. Que L Jr, Ho RY (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 96(7):2607–2624

    Article  CAS  PubMed  Google Scholar 

  14. Gardner KA, Mayer JM (1995) Understanding C–H bond oxidations: H and H-transfer in the oxidation of toluene by permanganate. Science 269(5232):1849–1851

    Article  CAS  PubMed  Google Scholar 

  15. de Visser SP, Oh K, Han A-R, Nam W (2007) Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron (IV)-oxo complexes. Inorg Chem 46(11):4632–4641

    Article  CAS  PubMed  Google Scholar 

  16. Hirao H, Kumar D, Que L Jr, Shaik S (2006) Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes. J Am Chem Soc 128(26):8590–8606

    Article  CAS  PubMed  Google Scholar 

  17. de Visser SP (2009) Trends in substrate hydroxylation reactions by heme and nonheme iron (IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. J Am Chem Soc 132(3):1087–1097

    Article  CAS  Google Scholar 

  18. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA (2007) Axial ligand tuning of a nonheme iron (IV)-oxo unit for hydrogen atom abstraction. Proc Natl Acad Sci 104(49):19181–19186

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klinker EJ, Shaik S, Hirao H, Que L Jr (2009) A two-state reactivity model explains unusual kinetic isotope effect patterns in C–H bond cleavage by nonheme oxo iron (IV) complexes. Angew Chem Int Ed 48(7):1291–1295

    Article  CAS  Google Scholar 

  20. Janardanan D, Usharani D, Chen H, Shaik S (2011) Modeling C–H abstraction reactivity of nonheme Fe(IV) O oxidants with alkanes: what role do counter ions play? J Phys Chem Lett 2(20):2610–2617

    Article  CAS  Google Scholar 

  21. Shaik S, Hirao H, Kumar D (2007) Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc Chem Res 40(7):532–542

    Article  CAS  PubMed  Google Scholar 

  22. Morimoto Y, Kotani H, Park J, Lee YM, Nam W, Fukuzumi S (2010) Metal ion-coupled electron transfer of a nonheme oxoiron (IV) complex: Remarkable enhancement of electron-transfer rates by Sc3+. J Am Chem Soc 133(3):403–405

    Article  CAS  PubMed  Google Scholar 

  23. Lee YM, Kotani H, Suenobu T, Nam W, Fukuzumi S (2008) Fundamental electron-transfer properties of non-heme oxoiron(IV) complexes. J Am Chem Soc 130(2):434–435

    Article  CAS  PubMed  Google Scholar 

  24. Latifi R, Bagherzadeh M, de Visser SP (2009) Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron (IV)–oxo complexes with the bond-dissociation energy of the C–H bond of the substrate. Chem Eur J 15(27):6651–6662

    Article  CAS  PubMed  Google Scholar 

  25. Fukuzumi S (2009) Roles of metal ions in controlling bioinspired electron-transfer systems. metal ion-coupled electron transfer. Prog Inorg Chem 56:49–154

    Article  CAS  Google Scholar 

  26. Morimoto Y, Park J, Suenobu T, Lee YM, Nam W, Fukuzumi S (2012) Mechanistic borderline of one-step hydrogen atom transfer versus stepwise Sc3+-coupled electron transfer from benzyl alcohol derivatives to a non-heme iron(IV)-oxo complex. Inorg Chem 51(18):10025–10036

    Article  CAS  PubMed  Google Scholar 

  27. Wimalasena K, May SW (1987) Mechanistic studies on dopamine beta-monooxygenase catalysis: N-dealkylation and mechanism-based inhibition by benzylic-nitrogen-containing compounds. Evidence for a single-electron-transfer mechanism. J Am Chem Soc 109(13):4036–4046

    Article  CAS  Google Scholar 

  28. Baciocchi E, Bietti M, Lanzalunga O, Lapi A, Raponi D (2010) N-Demethylation of N, N-Dimethylanilines by the Benzotriazole N-Oxyl radical: evidence for a two-step electron transfer–proton transfer mechanism. J Organ Chem 75(5):1378–1385

    Article  CAS  Google Scholar 

  29. Barbieri A, De Gennaro M, Di Stefano S, Lanzalunga O, Lapi A, Mazzonna M, Olivo G, Ticconi B (2015) Isotope effect profiles in the N-demethylation of N, N-dimethylanilines: a key to determine the p K a of nonheme Fe (iii)–OH complexes. Chem Commun 51(24):5032–5035

    Article  CAS  Google Scholar 

  30. Li C, Wu W, Cho KB, Shaik S (2009) Oxidation of tertiary amines by cytochrome P450—kinetic isotope effect as a spin-state reactivity probe. Chem Eur J 15(34):8492–8503

    Article  CAS  PubMed  Google Scholar 

  31. Roberts KM, Jones JP (2010) Anilinic N-oxides support cytochrome P450-mediated N-dealkylation through hydrogen-atom transfer. Chem Eur Jl 16(27):8096–8107

    Article  CAS  Google Scholar 

  32. Usharani D, Lacy DC, Borovik AS, Shaik S (2013) Dichotomous hydrogen atom transfer vs proton-coupled electron transfer during activation of X–H bonds (X = C, N, O) by nonheme iron-oxo complexes of variable basicity. J Am Chem Soc 135(45):17090–17104

    Article  CAS  PubMed  Google Scholar 

  33. Warren JJTTA, Mayer JM (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110(12):6961–7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sirjoosingh A, Hammes-Schiffer S (2011) Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states. J Phys Chem A 115(11):2367–2377

    Article  CAS  PubMed  Google Scholar 

  35. Mayer JM, Hrovat DA, Thomas JL, Borden WT (2002) Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J Am Chem Soc 124(37):11142–11147

    Article  CAS  PubMed  Google Scholar 

  36. Jeong YJ, Kang Y, Han AR, Lee YM, Kotani H, Fukuzumi S, Nam W (2008) Hydrogen atom abstraction and hydride transfer reactions by iron (IV)-oxo porphyrins. Angew Chem Int Ed 47(38):7321–7324

    Article  CAS  Google Scholar 

  37. Tishchenko O, Truhlar DG, Ceulemans A, Nguyen MT (2008) A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. J Am Chem Soc 130(22):7000–7010

    Article  CAS  PubMed  Google Scholar 

  38. Mayer JM (2010) Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc Chem Res 44(1):36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai W, Li C, Chen H, Shaik S (2012) Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way. Angew Chem Int Ed 51(23):5556–5578

    Article  CAS  Google Scholar 

  40. Saouma CT, Mayer JM (2014) Do spin state and spin density affect hydrogen atom transfer reactivity? Chem Sci 5(1):21–31

    Article  CAS  Google Scholar 

  41. Hammes-Schiffer S (2010) Introduction: proton-coupled electron transfer. Chem Rev 110:6937–6938

    Article  CAS  PubMed  Google Scholar 

  42. Yang L, Chen X, Qu Z, Gao J (2018) Combined multistate and Kohn–Sham density functional theory studies of the elusive mechanism of N-dealkylation of N, N-dimethylanilines mediated by the biomimetic nonheme oxidant FeIV (O)(N4Py)(ClO4)2. Front Chem 6:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lao K, Franzen S, Steffen M, Lambright D, Stanley R, Boxer SG (1995) Effects of applied electric fields on the quantum yields for the initial electron transfer steps in bacterial photosynthesis II. Dynamic Stark effect. Chem Phys 197(3):259–275

    Article  CAS  Google Scholar 

  44. Seki K, Traytak S, Tachiya M (2003) Rigorous calculation of electric field effects on the free energy change of the electron transfer reaction. J Chem Phys 118(2):669–679

    Article  CAS  Google Scholar 

  45. Shaik S, de Visser SP, Kumar D (2004) External electric field will control the selectivity of enzymatic-like bond activations. J Am Chem Soc 126(37):11746–11749

    Article  CAS  PubMed  Google Scholar 

  46. De Biase PM, Doctorovich F, Murgida DH, Estrin DA (2007) Electric field effects on the reactivity of heme model systems. Chem Phys Lett 434(1–3):121–126

    Article  CAS  Google Scholar 

  47. Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S (2008) Effect of external electric fields on the C–H Bond activation reactivity of nonheme iron-oxo reagents. J Am Chem Soc 130(11):3319–3327

    Article  CAS  PubMed  Google Scholar 

  48. Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision D. 01. Gaussian Inc, Wallingford

  49. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  50. Rauhut G, Pulay P (1995) Transferable scaling factors for density functional derived vibrational force fields. J Phys Chem 99(10):3093–3100

    Article  CAS  Google Scholar 

  51. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  52. Wang Y, Yang C, Wang H, Han K, Shaik S (2007) A new mechanism for ethanol oxidation mediated by cytochrome P450 2E1: bulk polarity of the active site makes a difference. Chembiochem Eur J Chem Biol 8(3):277–281

    Article  CAS  Google Scholar 

  53. Schröder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33(3):139–145

    Article  CAS  PubMed  Google Scholar 

  54. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105(6):2279–2328

    Article  CAS  PubMed  Google Scholar 

  55. Fried SD, Boxer SG (2017) Electric fields and enzyme catalysis. Annu Rev Biochem 86:387–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 21503089) and China Postdoctoral Science Foundation (2015M581393). Z.X.Q. thanks Adam Grofe for constructive suggestions as well as the improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zexing Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Qu, Z. The C–H bond activation by non-heme oxidant [(N4Py)FeIV(O)]2+ with external electric field. Theor Chem Acc 139, 64 (2020). https://doi.org/10.1007/s00214-020-2581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2581-4

Keywords

Navigation