Skip to main content
Log in

DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species?

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Through the introduction of dimethylamino (Me2N) substituent at the pyridine ring of 2-((R)-2-[(R)-1-(pyridine-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-ylmethyl)pyridine (PDP) ligand, the non-heme FeII(Me2NPDP)/H2O2/AcOH catalyst system was found to exhibit significant higher catalytic activity and enantioselectivity than the non-substituent one in the asymmetric epoxidation experiments. The mechanistic origin of the remarkable substituent effects in these oxidation reactions has not been well established. To ascertain the potent oxidant and the related reaction mechanism, a detailed DFT calculation was performed. Interestingly, a novel Fe(IV)-oxo Me2NPDP cation radical species, [(Me2NPDP)+ ·FeIV(O)(OAc)]2+ (Me2N 5), with about one spin spreading over the non-heme Me2NPDP ligand was formed via a carboxylic-acid-assisted O–O bond heterolysis, which is reminiscent of Compound I (an Fe(IV)(O)(porphyrin cation radical) species) in cytochrome P450 chemistry. Me2N 5 is energetically comparable with the cyclic ferric peracetate species Me2N 6, while in the pristine Fe(PDP) catalyst system, H 6 is more stable than H 5. Comparison of the activation energy for the ethylene epoxidation promoted by Me2N 5 and Me2N 6, Me2N 5 is supposed as the true oxidant triggering the epoxidation of olefins. In addition, a systematic research on the substituent effects varied from the electron-donating substituent (dMM, the substituents at sites 3, 4, and 5 of the pyridine ring: methyl, methoxyl, and methyl) to the electron-withdrawing one (CF3, 2,6-bis(trifluoromethyl)phenyl) on the electronic structure of the reaction intermediates has also been investigated. An alternative cyclic ferric peracetate complex is obtained, indicating that the substituents at the pyridine ring of PDP ligands have significant impacts on the electronic structure of the oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105(6):2253–2278

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Li XX, Liu Y, Wang Y (2017) Front Chem 5:3

    PubMed  PubMed Central  Google Scholar 

  4. Li XX, Postils V, Sun W, Faponle AS, Sola M, Wang Y, Nam W, de Visser SP (2017) Chem Eur J 23(26):6406–6418

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Kumar D, Yang C, Han K, Shaik S (2007) J Phys Chem B 111(26):7700–7710

    Article  CAS  PubMed  Google Scholar 

  6. Chakrabarty S, Austin RN, Deng D, Groves JT, Lipscomb JD (2007) J Am Chem Soc 129(12):3514–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beauvais LG, Lippard SJ (2005) J Am Chem Soc 127(20):7370–7378

    Article  CAS  PubMed  Google Scholar 

  8. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ (2001) Angew Chem Int Ed 40(15):2782–2807

    Article  CAS  Google Scholar 

  9. Que L Jr, Tolman WB (2008) Nature 455:333–340

    Article  CAS  PubMed  Google Scholar 

  10. Sun C-L, Li B-J, Shi Z-J (2011) Chem Rev 111(3):1293–1314

    Article  CAS  PubMed  Google Scholar 

  11. White MC (2012) Science 335:807–809

    Article  CAS  PubMed  Google Scholar 

  12. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128(26):8590–8606

    Article  CAS  PubMed  Google Scholar 

  13. White MC, Doyle AG, Jacobsen EN (2001) J Am Chem Soc 123(29):7194–7195

    Article  CAS  PubMed  Google Scholar 

  14. Mas-Ballesté R, Que L Jr (2007) J Am Chem Soc 129(51):15964–15972

    Article  PubMed  Google Scholar 

  15. Chen MS, White MC (2007) Science 318:783–787

    Article  CAS  PubMed  Google Scholar 

  16. Chen MS, White MC (2010) Science 327:566–571

    Article  CAS  PubMed  Google Scholar 

  17. Cussó O, Cianfanelli M, Ribas X, Klein Gebbink RJ, Costas M (2016) J Am Chem Soc 138(8):2732–2738

    Article  PubMed  Google Scholar 

  18. Cussó O, Garcia-Bosch I, Ribas X, Lloret-Fillol J, Costas M (2013) J Am Chem Soc 135(39):14871–14878

    Article  PubMed  Google Scholar 

  19. Nishikawa Y, Yamamoto H (2011) J Am Chem Soc 133(22):8432–8435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubois G, Murphy A, Stack TDP (2003) Organ Lett 5(14):2469–2472

    Article  CAS  Google Scholar 

  21. Marchi-Delapierre C, Jorge-Robin A, Thibon A, Menage S (2007) Chem Commun 11:1166–1168

    Article  Google Scholar 

  22. Cussó O, Ribas X, Lloret-Fillol J, Costas M (2015) Angew Chem Int Ed 54(9):2729–2733

    Article  Google Scholar 

  23. Miao C, Wang B, Wang Y, Xia C, Lee YM, Nam W, Sun W (2016) J Am Chem Soc 138(3):936–943

    Article  CAS  PubMed  Google Scholar 

  24. Lyakin OY, Bryliakov KP, Britovsek GJP, Talsi EP (2009) J Am Chem Soc 131(31):10798–10799

    Article  CAS  PubMed  Google Scholar 

  25. Lyakin OY, Bryliakov KP, Talsi EP (2011) Inorg Chem 50(12):5526–5538

    Article  CAS  PubMed  Google Scholar 

  26. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2012) ACS Catal 2(6):1196–1202

    Article  CAS  Google Scholar 

  27. Van Heuvelen KM, Fiedler AT, Shan X, De Hont RF, Meier KK, Bominaar EL, Münck E, Que L Jr (2012) Proc Natl Acad Sci USA 109(30):11933–11938

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Oliveira FT, Chanda A, Banerjee D, Shan X, Mondal S, Que L Jr, Bominaar EL, Münck E, Collins TJ (2007) Science 315:835–838

    Article  Google Scholar 

  29. Wang Y, Janardanan D, Usharani D, Han K, Que L Jr, Shaik S (2013) ACS Catal 3(6):1334–1341

    Article  CAS  Google Scholar 

  30. Oloo WN, Meier KK, Wang Y, Shaik S, Munck E, Que L Jr (2014) Nat Chem 5:3046

    Google Scholar 

  31. Makhlynets OV, Oloo WN, Moroz YS, Belaya IG, Palluccio TD, Filatov AS, Muller P, Cranswick MA, Que L Jr, Rybak-Akimova EV (2014) Chem Commun 50(6):645–648

    Article  CAS  Google Scholar 

  32. Lyakin OY, Zima AM, Samsonenko DG, Bryliakov KP, Talsi EP (2015) ACS Catal 5(5):2702–2707

    Article  CAS  Google Scholar 

  33. Zima AM, Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2016) ACS Catal 6(6):5399–5404

    Article  CAS  Google Scholar 

  34. Zima AM, Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2017) ACS Catal 7(1):60–69

    Article  CAS  Google Scholar 

  35. Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC (2016) Nature 537:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bigi MA, Liu P, Zou L, Houk KN, White MC (2012) Synlett 23(19):2768–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vermeulen NA, Chen MS, Christina White M (2009) Tetrahedron 65(16):3078–3084

    Article  CAS  Google Scholar 

  38. Bigi MA, Reed SA, White MC (2011) Nat Chem 3(3):216–222

    Article  CAS  PubMed  Google Scholar 

  39. Gormisky PE, White MC (2013) J Am Chem Soc 135(38):14052–14055

    Article  CAS  PubMed  Google Scholar 

  40. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105(6):2279–2328

    Article  CAS  PubMed  Google Scholar 

  41. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110(2):949–1017

    Article  CAS  PubMed  Google Scholar 

  42. Cussó O, Garcia-Bosch I, Font D, Ribas X, Lloret-Fillol J, Costas M (2013) Organ Lett 15(24):6158–6161

    Article  Google Scholar 

  43. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford

  44. Becke AD (1992) J Chem Phys 96(3):2155–2160

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  47. Grimme S (2006) J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  48. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  49. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  50. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  52. Perdew JP (1986) Phys Rev B 33(12):8822–8824

    Article  CAS  Google Scholar 

  53. Becke AD (1988) Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  54. Adamo C, Cossi M, Barone V (1999) J Mol Struc-Theochem 493(1–3):145–157

    Article  CAS  Google Scholar 

  55. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110(11):5029–5036

    Article  CAS  Google Scholar 

  56. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104

    Article  PubMed  Google Scholar 

  57. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  58. Swart M (2008) J Chem Theory Comput 4(12):2057–2066

    Article  CAS  PubMed  Google Scholar 

  59. Barone V, Cossi M (1998) J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  60. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669–681

    Article  CAS  PubMed  Google Scholar 

  61. Fukui K (1970) J Phys Chem 74(23):4161–4163

    Article  CAS  Google Scholar 

  62. Lu T, Chen F (2012) J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  63. Park MJ, Lee J, Suh Y, Kim J, Nam W (2006) J Am Chem Soc 128(8):2630–2634

    Article  CAS  PubMed  Google Scholar 

  64. Kang Y, Li X-X, Cho K-B, Sun W, Xia C, Nam W, Wang Y (2017) J Am Chem Soc 139(22):7444–7447

    Article  CAS  PubMed  Google Scholar 

  65. Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40(7):532–542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the National Natural Science Foundation of China (Project Nos. 21003116, 21173211, 21203218 and 21633013) and from the open fund of the State Key Laboratory of Molecular Reaction Dynamics (Project No. SKLMRD-K201715). The authors also gratefully acknowledge the computing resources and time made available by the Supercomputing Center of Cold and Arid Region Environment and the Engineering Research Institute of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2017_1477_MOESM1_ESM.pdf

The mechanistic details are presented in 12 figures and 10 tables. Cartesian coordinates of all involved complexes are also given. (PDF 3776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Sun, W., Xia, C. et al. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species?. J Biol Inorg Chem 22, 987–998 (2017). https://doi.org/10.1007/s00775-017-1477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1477-9

Keywords

Navigation