Skip to main content
Log in

A theoretical study for spin-dependent hydrogen abstraction by non-heme FeIVO complexes based on DFT potential energy surfaces

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Extensive studies have been performed to reveal the mechanism of alkane hydroxylation by high-valent non-heme FeIVO species in TauD-J and synthetic complexes. However, the fundamental differences in mechanism based on spin state have not yet been fully understood. To explicate the mechanism at an atomistic level, DFT potential energy surfaces were calculated along the intrinsic reaction coordinate of hydrogen abstraction. The Fe–O bond length change and hydrogen atom transfer occur with high asynchronicity, and only quintet FeIVO complexes use a transient FeIII-oxyl species for hydrogen abstraction. TauD-J uses both the σ- and π-pathways for hydrogen transfer, rendering it more reactive than synthetic complexes. The quintet σ-pathway involves the donation of α-electrons to the \({\sigma }_{\mathrm{Fe}-\mathrm{O}}^{*}\) orbital from both axial ligands and the C–H bond, which produces the FeIII-oxyl species. However, electron donation from the axial ligands may impede further electron transfer from the C–H bond, disrupting the hydrogen transfer process and reducing the tunneling effect. Conversely, the \({\sigma }_{\mathrm{Fe}-\mathrm{O}}^{*}\) orbital in the triplet π-pathway accepts both α- and β-electrons from the axial ligands, resulting in a swift elongation of the Fe–O bond length without generating the FeIII-oxyl species. This process does not affect hydrogen transfer as the \({\pi }_{\mathrm{Fe}-\mathrm{O}}^{*}\) orbital receives electrons from the C–H bond. This distinction clarifies why the tunneling effect is greater in the triplet state. Overall, this research offers insight into the detailed mechanism of hydrogen abstraction, emphasizing the role of axial ligands and spin-dependent reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  PubMed  Google Scholar 

  2. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  PubMed  Google Scholar 

  3. Galonic DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Biol 3:113–116

    Article  CAS  PubMed  Google Scholar 

  4. Hoffart LM, Barr EW, Guyer RB, Bollinger JM Jr, Krebs C (2006) Proc Natl Acad Sci U S A 103:14738–14743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM (2009) Biochemistry 48:4331–4343

    Article  CAS  PubMed  Google Scholar 

  6. Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ, Krebs C, Walsh CT, Bollinger JM Jr (2009) Proc Natl Acad Sci USA 106:17723–17728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bollinger JM Jr, Price JC, Hoffart LM, Barr EW, Krebs C (2005) Eur J Inorg Chem 2005:4245–4254

    Article  Google Scholar 

  8. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L (2003) Science 299:1037–1039

    Article  CAS  PubMed  Google Scholar 

  9. Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  CAS  PubMed  Google Scholar 

  10. Comba P, Fukuzumi S, Kotani H, Wunderlich S (2010) Angew Chem 49:2622–2625

    Article  CAS  Google Scholar 

  11. England J, Bigelow JO, Van Heuvelen KM, Farquhar ER, Martinho M, Meier KK, Frisch JR, Munck E, Que L Jr (2014) Chem Sci 5:1204–1215

    Article  CAS  PubMed  Google Scholar 

  12. Jackson TA, Rohde J-U, Seo MS, Sastri CV, DeHont R, Stubna A, Ohta T, Kitagawa T, Münck E, Nam W, Que L (2008) J Am Chem Soc 130:12394–12407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinho M, Banse F, Bartoli J-F, Mattioli TA, Battioni P, Horner O, Bourcier S, Girerd J-J (2005) Inorg Chem 44:9592–9596

    Article  CAS  PubMed  Google Scholar 

  14. Rohde J-U, Stubna A, Bominaar EL, Münck E, Nam W, Que L Jr (2006) Inorg Chem 45:6435–6445

    Article  CAS  PubMed  Google Scholar 

  15. Sastri CV, Lee J, Oh K, Lee YJ, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L Jr, Shaik S, Nam W (2007) Proc Natl Acad Sci USA 104:19181–19186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  PubMed  Google Scholar 

  17. Shaik S (2013) Int J Mass Spectrom 354–355:5–14

    Article  Google Scholar 

  18. Shaik S, Chen H, Janardanan D (2011) Nat Chem 3:19–27

    Article  CAS  PubMed  Google Scholar 

  19. Srnec M, Wong SD, Solomon EI (2014) Dalton Trans 43:17567–17577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. England J, Guo Y, Farquhar ER, Young VG Jr, Münck E, Que L Jr (2010) J Am Chem Soc 132:8635–8644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Munck E, Que L Jr (2009) Angew Chem 48:3622–3626

    Article  CAS  Google Scholar 

  22. Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Munck E, Que L Jr (2015) J Am Chem Soc 137:2428–2431

    Article  CAS  PubMed  Google Scholar 

  23. Lee NY, Mandal D, Bae SH, Seo MS, Lee Y-M, Shaik S, Cho K-B, Nam W (2017) Chem Sci 8:5460–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  Google Scholar 

  25. Godfrey E, Porro CS, de Visser SP (2008) J Phys Chem A 112:2464–2468

    Article  CAS  PubMed  Google Scholar 

  26. Latifi R, Bagherzadeh M, de Visser SP (2009) Chem Eur J 15:6651–6662

    Article  CAS  PubMed  Google Scholar 

  27. Mai BK, Kim Y (2016) Inorg Chem 55:3844–3852

    Article  CAS  PubMed  Google Scholar 

  28. Ye S, Neese F (2009) Curr Opin Chem Biol 13:89–98

    Article  CAS  PubMed  Google Scholar 

  29. Ye S, Neese F (2011) Proc Natl Acad Sci 108:1228–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Usharani D, Janardanan D, Shaik S (2011) J Am Chem Soc 133:176–179

    Article  CAS  PubMed  Google Scholar 

  31. Decker A, Rohde J-U, Klinker EJ, Wong SD, Que L, Solomon EI (2007) J Am Chem Soc 129:15983–15996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirao H, Kumar D, Que L, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  CAS  PubMed  Google Scholar 

  33. Hirao H, Que L, Nam W, Shaik S (2008) ChemEur J 14:1740–1756

    CAS  Google Scholar 

  34. Janardanan D, Wang Y, Schyman P, Que L Jr, Shaik S (2010) Angew Chem 49:3342–3345

    Article  CAS  Google Scholar 

  35. Johansson AJ, Blomberg MRA, Siegbahn PEM (2007) J Phys Chem C 111:12397–12406

    Article  CAS  Google Scholar 

  36. Klinker EJ, Shaik S, Hirao H, Que L (2009) Angew Chem Int Ed 48:1291–1295

    Article  CAS  Google Scholar 

  37. Kumar D, Hirao H, Que L, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  CAS  PubMed  Google Scholar 

  38. Mandal D, Ramanan R, Usharani D, Janardanan D, Wang B, Shaik S (2015) J Am Chem Soc 137:722–733

    Article  CAS  PubMed  Google Scholar 

  39. Mandal D, Shaik S (2016) J Am Chem Soc 138:2094–2097

    Article  CAS  PubMed  Google Scholar 

  40. Usharani D, Janardanan D, Li C, Shaik S (2013) Acc Chem Res 46:471–482

    Article  CAS  PubMed  Google Scholar 

  41. de Visser SP, Rohde J-U, Lee Y-M, Cho J, Nam W (2013) Coord Chem Rev 257:381–393

    Article  Google Scholar 

  42. Chen H, Lai W, Shaik S (2010) J Phys Chem Lett 1:1533–1540

    Article  CAS  Google Scholar 

  43. Ye S, Geng C-Y, Shaik S, Neese F (2013) Phys Chem Chem Phys 15:8017–8030

    Article  CAS  PubMed  Google Scholar 

  44. Mallick D, Shaik S (2017) J Am Chem Soc 139:11451–11459

    Article  CAS  PubMed  Google Scholar 

  45. Mandal D, Mallick D, Shaik S (2018) Acc Chem Res 51:107–117

    Article  CAS  PubMed  Google Scholar 

  46. Eckart C (1930) Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  47. Geng C, Ye S, Neese F (2010) Angew Chem Int Ed 49:5717–5720

    Article  CAS  Google Scholar 

  48. Srnec M, Wong SD, England J, Que L, Solomon EI (2012) Proc Natl Acad Sci USA 109:14326–14331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Srnec M, Wong SD, Matthews ML, Krebs C, Bollinger JM Jr, Solomon EI (2016) J Am Chem Soc 138:5110–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong SD, Srnec M, Matthews ML, Liu LV, Kwak Y, Park K, Bell Iii CB, Alp EE, Zhao J, Yoda Y, Kitao S, Seto M, Krebs C, Bollinger JM, Solomon EI (2013) Nature 499:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrikopoulos PC, Michel C, Chouzier S, Sautet P (2015) ACS Catal 5:2490–2499

    Article  CAS  Google Scholar 

  52. Klein JEMN, Dereli B, Que L, Cramer CJ (2016) Chem Commun 52:10509–10512

    Article  CAS  Google Scholar 

  53. Glendening ED, Landis CR, Weinhold F (2013) J Comput Chem 34:1429–1437

    Article  CAS  PubMed  Google Scholar 

  54. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  55. Zheng J, Zhang S, Corchado JC, Chuang Y-Y, Coitiño EL, Ellingson BA, Truhlar DG (2010) Gaussrate 2009-A. University of Minnesota, Minneapolis

    Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01 ed., Gaussian Inc., Wallingford CT

  57. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Melissas VS, Villà J, Rossi I, Coitiño EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2010) Polyrate 2010-A. University of Minnesota, Minneapolis

    Google Scholar 

  58. Weinhold F (2012) J Comput Chem 33:2363–2379

    Article  CAS  PubMed  Google Scholar 

  59. Shida N, Barbara PF, Almlöf J (1991) J Chem Phys 94:3633–3643

    Article  CAS  Google Scholar 

  60. Kim Y, Truhlar DG, Kreevoy MM (1991) J Am Chem Soc 113:7837–7847

    Article  CAS  Google Scholar 

  61. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized Transition State Theory. In: Baer M (ed) Theory of Chemical Reaction Dynamics, vol 4. CRC Press. Boca Raton, FL, pp 65–137

    Google Scholar 

  62. Kwon YH, Mai BK, Lee Y-M, Dhuri SN, Mandal D, Cho K-B, Kim Y, Shaik S, Nam W (2015) J Phys Chem Lett 6:1472–1476

    Article  CAS  PubMed  Google Scholar 

  63. Ye S, Riplinger C, Hansen A, Krebs C, Bollinger JM Jr, Neese F (2012) Chem Eur J 18:6555–6567

    Article  CAS  PubMed  Google Scholar 

  64. Badenhoop JK, Weinhold F (1997) J Chem Phys 107:5406–5421

    Article  CAS  Google Scholar 

  65. Srnec M, Solomon EI (2017) J Am Chem Soc 139:2396–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klein JEMN, Mandal D, Ching W-M, Mallick D, Que L Jr, Shaik S (2017) J Am Chem Soc 139:18705–18713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Kyung Hee University (KHU-20190977).

Author information

Authors and Affiliations

Authors

Contributions

SP did most of the calculations for NBO analysis and made most of figures and tables. BKM calculated the PES along the minimum energy path. YK wrote and proofread the manuscript.

Corresponding author

Correspondence to Yongho Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2516 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Mai, B.K. & Kim, Y. A theoretical study for spin-dependent hydrogen abstraction by non-heme FeIVO complexes based on DFT potential energy surfaces. Theor Chem Acc 142, 117 (2023). https://doi.org/10.1007/s00214-023-03059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03059-9

Keywords

Navigation