Skip to main content

Advertisement

Log in

Pauli energy and information-theoretic approach for evaluating dynamic and nondynamic electron correlation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Even though the quantification of different correlation regimes among electrons is controversial and a robust and generally applicable approach in this context is still lacking, accurately accounting for the electron correlation is a must. As the prominent and most well-known terms used to classify correlation effects, dynamic and nondynamic electron correlation is of concern herein. In this work, we consider a different tack to qualitative and quantitative description of the dynamic and nondynamic correlations, where Pauli energy and information-theoretic approach are considered for the purpose. To do so, several versions of the Pauli energy based on approximate kinetic energy density (KED) functionals and information-theoretic (IT) quantities like Fisher information, Shannon entropy, Onicescu information energy, and Ghosh–Berkowitz–Parr entropy with the two representations of electron density and shape function have been utilized. It is shown that although some KEDs may not reproduce the accurate Pauli energy results, their prediction for dynamic and nondynamic electron correlation can be desirable. There are also KEDs providing much better Pauli energy results than others, while their shortcomings can still be unveiled when they are used to describe electron correlation regimes. On the other hand, to more balanced treatment of electron correlation effects we propose to use the IT quantities with significantly different views from the perspectives of electron density distribution, scaling properties, and physiochemical meanings in the framework of Pauli energy. The efficiency and usefulness of the developed models have been demonstrated for both the dynamic and nondynamic electron correlation in molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lennard-Jones JE (1952) J Chem Phys 20:1024

    CAS  Google Scholar 

  2. Löwdin PO (1955) Phys Rev 97:1509

    Google Scholar 

  3. Sinanoğlu O (1964) Adv Chem Phys 6:315

    Google Scholar 

  4. Raghavachari K (1991) Annu Rev Phys Chem 42:615

    CAS  Google Scholar 

  5. Löwdin PO (1995) Int J Quantum Chem 55:77

    Google Scholar 

  6. Raghavachari K, Anderson JB (1996) J Phys Chem 100:12960

    CAS  Google Scholar 

  7. Bartlett RJ, Stanton JF (1994) Rev Comput Chem 5:65

    CAS  Google Scholar 

  8. Wilson S (2007) Electron Correlation in Molecules. Dover, New York

    Google Scholar 

  9. Tew DP, Klopper W, Helgaker T (2007) J Comput Chem 28:1307

    CAS  PubMed  Google Scholar 

  10. Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4

    PubMed  Google Scholar 

  11. Wigner E, Seitz F (1934) Phys Rev 46:509

    CAS  Google Scholar 

  12. Wigner E (1934) Phys Rev 46:1002

    CAS  Google Scholar 

  13. Löwdin PO (1958) Adv Chem Phys 2:207

    Google Scholar 

  14. Gauss J (1993) J Chem Phys 99:3629

    CAS  Google Scholar 

  15. Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315

    PubMed  Google Scholar 

  16. Mayer I, Matito E (2010) Phys Chem Chem Phys 12:11308

    CAS  PubMed  Google Scholar 

  17. Matito E, Salvador P, Styszyński J (2013) Phys Chem Chem Phys 15:20080

    CAS  PubMed  Google Scholar 

  18. Alipour M, Mohajeri A (2013) Int J Quantum Chem 113:1803

    CAS  Google Scholar 

  19. Feixas F, Sola M, Barroso JM, Ugalde JM, Matito E (2014) J Chem Theory Comput 10:3055

    CAS  PubMed  Google Scholar 

  20. Rodríguez-Mayorga M, Ramos-Cordoba E, Feixas F, Matito E (2017) Phys Chem Chem Phys 19:4522

    PubMed  Google Scholar 

  21. Ali ZA, Aquino FW, Wong BM (2018) Nat Commun 9:4733

    PubMed  PubMed Central  Google Scholar 

  22. London AE, Chen H, Sabuj MA, Tropp J, Saghayezhian M, Eedugurala N, Zhang BA, Liu Y, Gu X, Wong BM, Rai N, Bowman MK, Azoulay JD (2019) Sci Adv 5:eaav2336

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mok DKW, Neumann R, Handy NC (1996) J Phys Chem 100:6225

    CAS  Google Scholar 

  24. Valderrama E, Ludeña EV, Hinze J (1997) J Chem Phys 106:9227

    CAS  Google Scholar 

  25. Handy NC, Cohen AJ (2001) Mol Phys 99:403

    CAS  Google Scholar 

  26. Cremer D (2001) Mol Phys 99:1899

    CAS  Google Scholar 

  27. Juhász T, Mazziotti DA (2006) J Chem Phys 125:174105

    PubMed  Google Scholar 

  28. Crittenden DL (2013) J Phys Chem A 117:3852

    CAS  PubMed  Google Scholar 

  29. Tsuchimochi T, Van Voorhis T (2014) J Chem Phys 141:164117

    PubMed  Google Scholar 

  30. Hollett JW, Hosseini H, Menzies C (2016) J Chem Phys 145:084106

    PubMed  Google Scholar 

  31. Benavides-Riveros CL, Lathiotakis NN, Schilling C, Marques MAL (2017) Phys Rev A: Atom Mol Opt Phys 95:032507

    Google Scholar 

  32. Vuckovic S, Irons TJP, Wagner LO, Teale AM, Gori-Giorgi P (2017) Phys Chem Chem Phys 19:6169

    CAS  PubMed  Google Scholar 

  33. Piris M (2017) Phys Rev Lett 119:063002

    PubMed  Google Scholar 

  34. Ramos-Cordoba E, Salvador P, Matito E (2016) Phys Chem Chem Phys 18:24015

    CAS  PubMed  Google Scholar 

  35. Ramos-Cordoba E, Matito E (2017) J Chem Theory Comput 13:2705

    CAS  PubMed  Google Scholar 

  36. Benavides-Riveros CL, Lathiotakis NN, Marques MAL (2017) Phys Chem Chem Phys 19:12655

    CAS  PubMed  Google Scholar 

  37. Via-Nadal M, Rodríguez-Mayorga M, Ramos-Cordoba E, Matito E (2019) J Phys Chem Lett 10:4032

    CAS  PubMed  Google Scholar 

  38. Hollett JW, Loos PF (2020) J Chem Phys 152:014101

    CAS  PubMed  Google Scholar 

  39. Jensen F (2017) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  40. Hollett JW, Gill PMW (2011) J Chem Phys 134:114111

    PubMed  Google Scholar 

  41. Holas A, March NH (1991) Phys Rev A 44:5521

    CAS  PubMed  Google Scholar 

  42. Liu S, Rong C, Lu T, Hu H (2018) J Phys Chem A 122:3087

    CAS  PubMed  Google Scholar 

  43. Huang Y, Liu L, Rong C, Lu T, Ayers PW, Liu S (2018) J Mol Model 24:213

    PubMed  Google Scholar 

  44. Fisher RA (1925) Proc Camb Philol Soc 22:700

    Google Scholar 

  45. Shannon CE (1948) Bell Syst Tech J 27:379

    Google Scholar 

  46. Onicescu O (1966) CR Acad Sci Paris A 263:841

    Google Scholar 

  47. Ghosh SK, Berkowitz M, Parr RG (1984) Proc Natl Acad Sci U S A 81:8028

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nalewajski RF, Parr RG (2000) Proc Natl Acad Sci USA 97:8879

    CAS  PubMed  Google Scholar 

  49. Nalewajski RF, Parr RG (2001) J Phys Chem A 105:7391

    CAS  Google Scholar 

  50. Guevara NL, Sagar RP, Esquivel RO (2003) Phys Rev A 67:012507

    Google Scholar 

  51. Nagy Á (2007) Chem Phys Lett 449:212

    CAS  Google Scholar 

  52. Sen KD, Antolín J, Angulo JC (2007) Phys Rev A 76:032502

    Google Scholar 

  53. Nalewajski RF (2008) Int J Quantum Chem 108:2230

    CAS  Google Scholar 

  54. Mohajeri A, Alipour M (2009) Chem Phys 360:132

    CAS  Google Scholar 

  55. Matta CF, Sichinga M, Ayers PW (2011) Chem Phys Lett 514:379

    CAS  Google Scholar 

  56. Alipour M, Mohajeri A (2011) Mol Phys 109:1967

    CAS  Google Scholar 

  57. Liu S, Rong C, Lu T (2014) J Phys Chem A 118:3698

    CAS  PubMed  Google Scholar 

  58. Alipour M (2013) Mol Phys 111:3246

    CAS  Google Scholar 

  59. Alipour M (2015) Chem Phys Lett 635:210

    CAS  Google Scholar 

  60. Delle Site L (2015) Int J Quantum Chem 115:1396

    CAS  Google Scholar 

  61. Heidar-Zadeh F, Ayers PW, Verstraelen T, Vinogradov I, Vöhringer-Martinez E, Bultinck P (2018) J Phys Chem A 122:4219

    CAS  PubMed  Google Scholar 

  62. Alipour M (2018) Acta Phys Chim Sin 34:407

    CAS  Google Scholar 

  63. Yu D, Stuyver T, Rong C, Alonso M, Lu T, De Proft F, Geerlings P, Liu S (2019) Phys Chem Chem Phys 21:18195

    CAS  PubMed  Google Scholar 

  64. Ludeña EV, Torres FJ, Becerra M, Rincón L, Liu S (2020) J Phys Chem A 124:386

    PubMed  Google Scholar 

  65. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  66. Kohn W, Sham LJ (1965) J Phys Rev 140:A1133

    Google Scholar 

  67. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  68. Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, Tokyo

    Google Scholar 

  69. Liu S (2016) Acta Phys Chim Sin 32:98

    Google Scholar 

  70. Rong C, Wang B, Zhao D, Liu S (2019) WIREs Comput Mol Sci 10:e1461

    Google Scholar 

  71. Chai JD (2012) J Chem Phys 136:154104

    PubMed  Google Scholar 

  72. Weizsäcker CFV (1935) Z Phys 96:431

    Google Scholar 

  73. Liu S, Parr RG (1996) Phys Rev A 53:2211

    CAS  PubMed  Google Scholar 

  74. Kirzhnits DA (1957) Zh Eksperim iTeor Fiz 32:115 [(1957) J Soviet Phys JETP 5:64]

  75. Gross EKU, Dreizler RM (1979) Phys Rev A 20:1798

    CAS  Google Scholar 

  76. Govind N, Wang J, Guo H (1994) Phys Rev B 50:11175

    CAS  Google Scholar 

  77. Yonei K (1967) J Phys Soc Jpn 22:1127

    CAS  Google Scholar 

  78. Thakkar AJ, Pedersen WA (1990) Int J Quantum Chem 38:327

    Google Scholar 

  79. Thakkar AJ (1992) Phys Rev A 46:6920

    CAS  PubMed  Google Scholar 

  80. Pearson EW, Gordon RG (1985) J Chem Phys 82:881

    CAS  Google Scholar 

  81. DePristo AE, Kress JD (1987) Phys Rev A 35:438

    CAS  Google Scholar 

  82. Lee H, Lee C, Parr RG (1991) Phys Rev A 44:768

    CAS  PubMed  Google Scholar 

  83. Ou-Yang H, Levy M (1991) Int J Quantum Chem 40:379

    Google Scholar 

  84. Ou-Yang H, Levy M (1990) Phys Rev A 42:155

    CAS  Google Scholar 

  85. Becke AD (1986) J Chem Phys 85:7184

    CAS  Google Scholar 

  86. Becke AD (1986) J Chem Phys 84:4524

    CAS  Google Scholar 

  87. DePristo AE, Kress JD (1987) J Chem Phys 86:1425

    CAS  Google Scholar 

  88. Perdew JP (1986) Phys Rev B 33:8822

    CAS  Google Scholar 

  89. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    CAS  Google Scholar 

  90. Acharya PK, Bartolotti LJ, Sears SB, Parr RG (1980) Proc Natl Acad Sci U S A 77:6978

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gázquez JL, Robles J (1982) J Chem Phys 76:1467

    Google Scholar 

  92. Laricchia S, Constantin LA, Fabiano E, Della Sala F (2014) J Chem Theory Comput 10:164

    CAS  PubMed  Google Scholar 

  93. Brack M, Jennings BK, Chu YH (1976) Phys Lett B 65:1

    Google Scholar 

  94. Hodges CH (1973) Can J Phys 51:1428

    Google Scholar 

  95. Constantin LA, Fabiano E, Della Sala F (2017) J Chem Theory Comput 13:4228

    CAS  PubMed  Google Scholar 

  96. Thomas LH (1927) Math Proc Camb Philos Soc 23:542

    CAS  Google Scholar 

  97. Fermi E (1927) Rend Accad Naz Lincei 6:602

    CAS  Google Scholar 

  98. Liu S, Zhao D, Rong C, Lu T, Liu S (2019) J Chem Phys 50:204106

    Google Scholar 

  99. Liu S (2007) J Chem Phys 126:191107

    PubMed  Google Scholar 

  100. Zhou XY, Rong C, Lu T, Zhou P, Liu S (2016) J Phys Chem A 120:3634

    CAS  PubMed  Google Scholar 

  101. Cao X, Rong C, Zhong A, Lu T, Liu S (2018) J Comput Chem 39:117

    CAS  PubMed  Google Scholar 

  102. Alipour M, Badooei Z (2018) J Phys Chem A 122:6424

    CAS  PubMed  Google Scholar 

  103. Alipour M, Badooei Z (2018) Int J Quantum Chem 118:e25791

    Google Scholar 

  104. Wu J, Yu D, Liu S, Rong C, Zhong A, Chattaraj PK, Liu S (2019) J Phys Chem A 123:6751

    CAS  PubMed  Google Scholar 

  105. Yu D, Rong C, Lu T, Geerlings P, De Proft F, Alonso M, Liu S (2020) Phys Chem Chem Phys 22:4715

    CAS  PubMed  Google Scholar 

  106. Ayers PW (2000) Proc Natl Acad Sci U S A 97:1959

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Parr RG, Bartolotti LJ (1983) J Phys Chem 87:2810

    CAS  Google Scholar 

  108. De Proft F, Ayers PW, Sen KD, Geerlings P (2004) J Chem Phys 120:9969

    PubMed  Google Scholar 

  109. Ayers PW, De Proft F, Geerlings P (2007) Phys Rev A 75:012508

    Google Scholar 

  110. Rong C, Lu T, Ayers PW, Chattaraj PK, Liu S (2015) Phys Chem Chem Phys 17:4977

    CAS  PubMed  Google Scholar 

  111. Bohórquez HJ (2015) Phys Chem Chem Phys 17:32053

    PubMed  Google Scholar 

  112. Ayers PW, Nagy Á (2007) J Chem Phys 126:144108

    PubMed  Google Scholar 

  113. Nagy Á (2013) Chem Phys Lett 556:355

    CAS  Google Scholar 

  114. Nagy Á (2015) Int J Quantum Chem 115:1392

    CAS  Google Scholar 

  115. Lin YS, Tsai CW, Li GD, Chai JD (2012) J Chem Phys 136:154109

    PubMed  Google Scholar 

  116. Rong C, Lu T, Liu S (2014) J Chem Phys 140:024109

    PubMed  Google Scholar 

  117. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  118. Lee C, Yang V, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  119. Frisch MJ et al (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  120. Lu T, Chen F (2012) J Comput Chem 33:580

    PubMed  Google Scholar 

  121. García-Aldea D, Alvarellos JE (2007) J Chem Phys 127:144109

    PubMed  Google Scholar 

  122. García-Aldea D, Alvarellos JE (2005) Advances in computational methods in science and engineering. Koninklijke Brill NV, Leiden

    Google Scholar 

  123. Alipour M, Mohajeri A (2012) Mol Phys 110:403

    CAS  Google Scholar 

  124. Liu S (2019) J Chem Phys 151:141103

    PubMed  Google Scholar 

  125. Frieden BR (1998) Physics from fisher information. Cambridge University Press, Cambridge

    Google Scholar 

  126. Alipour M, Safari Z (2016) Phys Chem Chem Phys 18:17917

    CAS  PubMed  Google Scholar 

  127. García-Aldea D, Alvarellos JE (2008) J Chem Phys 129:074103

    PubMed  Google Scholar 

  128. García-Aldea D, Alvarellos JE (2012) Phys Chem Chem Phys 14:1756

    PubMed  Google Scholar 

  129. Mi W, Genova A, Pavanello M (2018) J Chem Phys 148:184107

    PubMed  Google Scholar 

  130. Xu Q, Lv J, Wang Y, Ma Y (2020) Phys Rev B 101:045110

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shiraz University for providing computational facilities for this project.

Funding

There is no funding to report for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Alipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, M., Khorrami, M. Pauli energy and information-theoretic approach for evaluating dynamic and nondynamic electron correlation. Theor Chem Acc 139, 171 (2020). https://doi.org/10.1007/s00214-020-02689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02689-7

Keywords

Navigation