Skip to main content
Log in

Analyzing the N–H+π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Tryptophan and phenylakylamines (PAAs) are important biomolecules, which are involved in a myriad of processes. These molecules have been experimentally reported to exhibit N–H+…π interactions in their protonated form; however, this has not been theoretically investigated in detail. Generally, such interactions are observed in diverse biological systems, and their evaluation would be useful for understanding protein folding and functioning. Therefore, in this study, we have described the N–H+…π interactions of the abovementioned classes of molecules using the Quantum Theory of Atoms In Molecules (QTAIM), Natural Bond Orbital (NBO), and Non-Covalent Interaction (NCI) analyses. The results of our N–H+…π interaction energy calculations were consistent with the experimental energies derived from the redshift of the vibrational stretches. The energy values obtained using the QTAIM-based Espinosa’s approach provided a relatively better result than similar approaches previously reported in the literature. Furthermore, we observed that the N–H+…π interaction energy in tryptophan is weaker than the resonance-assisted hydrogen bond energy of the N–H+…O=C interactions of its three most stable conformers accessible at room temperature. In contrast, the strength of the N–H+…π interaction in PAAs was observed to increase with increasing alkyl lateral chain length. The increased flexibility of longer chains increases the distance between nitrogen and the phenyl ring without disturbing the N–H+…π interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the current study shall be provided by the corresponding author upon reasonable request.

References

  1. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 18:379–401. https://doi.org/10.1038/s41573-019-0016-5

    Article  CAS  PubMed  Google Scholar 

  2. Duarte CJ, Cormanich RA, Ducati LC, Rittner R (2013) 1H NMR and theoretical studies on the conformational equilibrium of tryptophan methyl ester. J Mol Struct 1050:174–179. https://doi.org/10.1016/j.molstruc.2013.07.024

    Article  CAS  Google Scholar 

  3. Anderson JS, Bowitch GS, Brewster RL (1983) Influence of conformation on the fluorescence of tryptophan-containing peptides. Biopolymers 22:2459–2476. https://doi.org/10.1002/bip.360221111

    Article  CAS  Google Scholar 

  4. Kowalska-Baron A (2015) Theoretical study of the complexes of tyrosine and tryptophan with biologically important metal cations in aqueous solutions. Comput Theor Chem 1057:7–14. https://doi.org/10.1016/j.comptc.2015.01.010

    Article  CAS  Google Scholar 

  5. Lioe H, O’Hair RAJ, Reid GE (2004) Gas-phase reactions of protonated tryptophan. J Am Soc Mass Spectrom 15:65–76. https://doi.org/10.1016/j.jasms.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  6. Rizzo TR, Park YD, Levy DH (1986) Dispersed fluorescence of jet-cooled tryptophan: excited state conformers and intramolecular exciplex formation. J Chem Phys 85:6945–6951. https://doi.org/10.1063/1.451381

    Article  CAS  Google Scholar 

  7. Rodrigues-Oliveira AF, Ribeiro FWM, Cervi G, Correra TC (2018) Evaluation of common theoretical methods for predicting infrared multiphotonic dissociation vibrational spectra of intramolecular hydrogen-bonded ions. ACS Omega 3:9075–9085. https://doi.org/10.1021/acsomega.8b00815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mino WK, Gulyuz K, Wang D, Stedwell CN, Polfer NC (2011) Gas-phase structure and dissociation chemistry of protonated tryptophan elucidated by infrared multiple-photon dissociation spectroscopy. J Phys Chem Lett 2:299–304. https://doi.org/10.1021/jz1017174

    Article  CAS  Google Scholar 

  9. Pereverzev AY, Cheng X, Nagornova NS, Reese DL, Steele RP, Boyarkin OV (2016) Vibrational signatures of conformer-specific intramolecular interactions in protonated tryptophan. J Phys Chem A 120:5598–5608. https://doi.org/10.1021/acs.jpca.6b05605

    Article  CAS  PubMed  Google Scholar 

  10. Chiavarino B, Crestoni ME, Schütz M, Bouchet A, Piccirillo S, Steinmetz V, Dopfer O, Fornarini S (2014) Cation − π interactions in protonated phenylalkylamines. J Phys Chem A 118:7130–7138. https://doi.org/10.1021/jp505037n

    Article  CAS  PubMed  Google Scholar 

  11. Bouchet A, Schütz M, Chiavarino B, Elisa Crestoni M, Fornarini S, Dopfer O (2015) IR spectrum of the protonated neurotransmitter 2-phenylethylamine: dispersion and anharmonicity of the NH3 + –π interaction. Phys Chem Chem Phys 17:25742–25754. https://doi.org/10.1039/C5CP00221D

    Article  CAS  PubMed  Google Scholar 

  12. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  13. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  14. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing Noncovalent Interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Correra TC, Fernandes AS, Reginato MM, Ducati LC, Berden G, Oomens J (2017) Probing the geometry reorganization from solution to gas-phase in putrescine derivatives by IRMPD, 1H-NMR and theoretical calculations. Phys Chem Chem Phys 19:24330–24340. https://doi.org/10.1039/c7cp04617k

    Article  CAS  Google Scholar 

  16. Masson MAC, Karpfenstein R, Oliveira-silva D, Teuler J, Archirel P, Mâitre P, Correra TC (2018) Evaluation of Ca 2 + binding sites in tacrolimus by infrared multiple photon dissociation spectroscopy. https://doi.org/10.1021/acs.jpcb.8b06523

  17. Salehi S, Mashmool Moghaddam SM, Tarin M, Shokooh Saljooghi A (2020) Pharmaceutical nickel(II) chelation properties of 3-hydroxyflaven, deferiprone and maltol metal chelators: A density functional study. Phys Chem Res 8:91–110. https://doi.org/10.22036/pcr.2019.202156.1677

    Article  CAS  Google Scholar 

  18. Potla KM, Poojith N, Osório FAP, Valverde C, Chinnam S, Suchetan PA, Vankayalapati S (2020) An analysis of spectroscopic, computational and biological activity studies of L-shaped sulfamoylbenzoic acid derivatives: a third order nonlinear optical material. J Mol Struct 1210:128070. https://doi.org/10.1016/j.molstruc.2020.128070

    Article  CAS  Google Scholar 

  19. Allal H, Belhocine Y, Rahali S, Damous M, Ammouchi N (2020) Structural, electronic, and energetic investigations of acrolein adsorption on B36 borophene nanosheet: a dispersion-corrected DFT insight. J Mol Model 26:128. https://doi.org/10.1007/s00894-020-04388-3

    Article  CAS  PubMed  Google Scholar 

  20. Likhitha U, Narayana B, Sarojini BK, Madan Kumar S, Lobo AG, Karthick T (2020) A study on interwoven hydrogen bonding interactions in new zidovudine-picric acid (1:1) cocrystal through single crystal XRD, spectral and computational methods. J Mol Struct 1211:128052. https://doi.org/10.1016/j.molstruc.2020.128052

    Article  CAS  Google Scholar 

  21. Niu X, Huang Z, Ma L, Shen T, Guo L (2013) Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. J Chem Sci 125:949–958. https://doi.org/10.1007/s12039-013-0445-3

    Article  CAS  Google Scholar 

  22. Su P, Chen Z, Wu W (2015) An energy decomposition analysis study for intramolecular non-covalent interaction. Chem Phys Lett 635:250–256. https://doi.org/10.1016/j.cplett.2015.06.078

    Article  CAS  Google Scholar 

  23. Schütz M, Bouchet A, Dopfer O (2016) Infrared spectrum of the cold ortho-fluorinated protonated neurotransmitter 2-phenylethylamine: competition between NH + …π and NH + …F interactions. Phys Chem Chem Phys 18:26980–26989. https://doi.org/10.1039/C6CP05915E

    Article  CAS  PubMed  Google Scholar 

  24. Bouchet A, Schütz M, Dopfer O (2016) Competing insertion and external binding motifs in hydrated neurotransmitters: infrared spectra of protonated phenylethylamine monohydrate. ChemPhysChem 17:232–243. https://doi.org/10.1002/cphc.201500939

    Article  CAS  PubMed  Google Scholar 

  25. Kumar M, Balaji PV (2014) C-H…pi interactions in proteins: prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability. J Mol Model 20:2136. https://doi.org/10.1007/s00894-014-2136-5

    Article  CAS  PubMed  Google Scholar 

  26. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci 96:9459–9464. https://doi.org/10.1073/pnas.96.17.9459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahadevi AS, Sastry GN (2013) Cation − π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138. https://doi.org/10.1021/cr300222d

    Article  CAS  PubMed  Google Scholar 

  28. Yamada S (2020) Cation–π interactions in organic crystals. Coord Chem Rev 415:213301. https://doi.org/10.1016/j.ccr.2020.213301

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB GES, Robb MA, Cheeseman JR, Scalmani G, Barone VBM, Petersson GA, Nakatsuji H, Caricato M, Li XHPH, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JLMH, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida MTN, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJEB, Kudin KN, Staroverov VN, Keith T, Kobayashi RJN, Raghavachari K, Rendell A, Burant JC, Iyengar SSJT, Cossi M, Rega N, Millam JM, Klene M, Knox JEJBC, Bakken V, Adamo C, Jaramillo J, Gomperts RRES, Yazyev O, Austin AJ, Cammi R, Pomelli CJWO, Martin RL, Morokuma K, Zakrzewski VGGAV, Salvador P, Dannenberg JJ, Dapprich SADD, Farkas O, Foresman JB, Ortiz JVJC, Fox DJ (2013) Gaussian 09, Revision D.01

  30. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  32. Jabłoński M, Palusiak M (2010) Basis set and method dependence in Quantum Theory of Atoms in Molecules calculations for covalent bonds. J Phys Chem A 114:12498–12505. https://doi.org/10.1021/jp106740e

    Article  CAS  PubMed  Google Scholar 

  33. Jabłoński M, Palusiak M (2010) Basis set and method dependence in atoms in molecules calculations. J Phys Chem A 114:2240–2244. https://doi.org/10.1021/jp911047s

    Article  CAS  PubMed  Google Scholar 

  34. Forni A, Pieraccini S, Franchini D, Sironi M (2016) Assessment of DFT functionals for QTAIM topological analysis of halogen bonds with benzene. J Phys Chem A 120:9071–9080. https://doi.org/10.1021/acs.jpca.6b07578

    Article  CAS  PubMed  Google Scholar 

  35. Esrafili MD (2012) Investigation of H-bonding and halogen-bonding effects in dichloroacetic acid: DFT calculations of NQR parameters and QTAIM analysis. J Mol Model 18:5005–5016. https://doi.org/10.1007/s00894-012-1496-y

    Article  CAS  PubMed  Google Scholar 

  36. Rincón DA, Cordeiro MNDS, Mosquera RA (2016) On the effects of the basis set superposition error on the change of QTAIM charges in adduct formation. Application to complexes between morphine and cocaine and their main metabolites. RSC Adv 6:110642–110655. https://doi.org/10.1039/C6RA22736H

    Article  CAS  Google Scholar 

  37. Shameera Ahamed TK, Rajan VK, Sabira K, Muraleedharan K (2019) DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Comput Biol Chem 80:66–78. https://doi.org/10.1016/j.compbiolchem.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  38. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Karafiloglou P, Landis CR, Weinhold F (2018) NBO 7.0

  39. Keith TA (2017) AIMAll (Version 17.11.14)

  40. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  42. Zhurko GA Chemcraft—graphical program for visualization of quantum chemistry computations-v.1.8. https://chemcraftprog.com

  43. Fuster F, Grabowski SJ (2011) Intramolecular hydrogen bonds: the QTAIM and ELF characteristics. J Phys Chem A 115:10078–10086. https://doi.org/10.1021/jp2056859

    Article  CAS  PubMed  Google Scholar 

  44. Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J Am Chem Soc 122:11154–11161. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  45. Sarkar R, Kundu TK (2019) Nonbonding interaction analyses on PVDF/[BMIM][BF4] complex system in gas and solution phase. J Mol Model 25:131. https://doi.org/10.1007/s00894-019-4020-9

    Article  CAS  PubMed  Google Scholar 

  46. Grabowski SJ (2006) Theoretical studies of strong hydrogen bonds. Annu Reports Sect “C” (Physical Chem 102:131. https://doi.org/10.1039/b417200k

  47. Afonin AV, Vashchenko AV, Sigalov MV (2016) Estimating the energy of intramolecular hydrogen bonds from 1 H NMR and QTAIM calculations. Org Biomol Chem 14:11199–11211. https://doi.org/10.1039/C6OB01604A

    Article  CAS  PubMed  Google Scholar 

  48. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  49. Batista PR, Karas LJ, Viesser RV, De Oliveira CC, Gonçalves MB, Tormena CF, Rittner R, Ducati LC, De Oliveira PR (2019) Dealing with hydrogen bonding on the conformational preference of 1,3-aminopropanols: experimental and molecular dynamics approaches. J Phys Chem A 123:8583–8594. https://doi.org/10.1021/acs.jpca.9b05619

    Article  CAS  PubMed  Google Scholar 

  50. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1585–1612. https://doi.org/10.1016/S1386-1425(98)00348-5

    Article  Google Scholar 

  51. Fischer KC, Sherman SL, Voss JM, Zhou J, Garand E (2019) Microsolvation structures of protonated glycine and L-alanine. J Phys Chem A 123:3355–3366. https://doi.org/10.1021/acs.jpca.9b01578

    Article  CAS  PubMed  Google Scholar 

  52. Voss JM, Fischer KC, Garand E (2018) Revealing the structure of isolated peptides: IR–IR predissociation spectroscopy of protonated triglycine isomers. J Mol Spectrosc 347:28–34. https://doi.org/10.1016/j.jms.2018.03.006

    Article  CAS  Google Scholar 

  53. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. J Phys Chem B 111:9655–9663. https://doi.org/10.1021/jp073203j

    Article  CAS  PubMed  Google Scholar 

  54. Afonin AV, Sterkhova IV, Vashchenko AV, Sigalov MV (2018) Estimating the energy of intramolecular bifurcated (three-centered) hydrogen bond by X-ray, IR and 1 H NMR spectroscopy, and QTAIM calculations. J Mol Struct 1163:185–196. https://doi.org/10.1016/j.molstruc.2018.02.106

    Article  CAS  Google Scholar 

  55. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  56. El-Emam AA, Saveeth Kumar E, Janani K, Al-Wahaibi LH, Blacque O, El-Awady MI, Al-Shaalan NH, Percino MJ, Thamotharan S (2020) Quantitative assessment of the nature of noncovalent interactions in N -substituted-5-(adamantan-1-yl)-1,3,4-thiadiazole-2-amines: insights from crystallographic and QTAIM analysis. RSC Adv 10:9840–9853. https://doi.org/10.1039/D0RA00733A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cukrowski I, Matta CF (2010) Hydrogen–hydrogen bonding: a stabilizing interaction in strained chelating rings of metal complexes in aqueous phase. Chem Phys Lett 499:66–69. https://doi.org/10.1016/j.cplett.2010.09.013

    Article  CAS  Google Scholar 

  58. Miranda MO, Duarte DJR, Alkorta I (2020) Anion-anion complexes established between aspartate dimers. ChemPhysChem. https://doi.org/10.1002/cphc.201901200

    Article  PubMed  Google Scholar 

  59. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15. https://doi.org/10.1016/S0022-2860(00)00454-3

    Article  CAS  Google Scholar 

  60. Gilli G (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, Oxford

    Book  Google Scholar 

  61. Halls MD, Velkovski J, Schlegel HB (2001) Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc 105:413–421. https://doi.org/10.1007/s002140000204

    Article  CAS  Google Scholar 

  62. Hilal R, Aziz SG, Alyoubi AO, Elroby S (2015) Quantum topology of the charge density of chemical bonds. QTAIM analysis of the C-Br and O-Br bonds. Procedia Comput Sci 51:1872–1877. https://doi.org/10.1016/j.procs.2015.05.423

    Article  Google Scholar 

  63. Cukrowski I, de Lange JH, Adeyinka AS, Mangondo P (2015) Evaluating common QTAIM and NCI interpretations of the electron density concentration through IQA interaction energies and 1D cross-sections of the electron and deformation density distributions. Comput Theor Chem 1053:60–76. https://doi.org/10.1016/j.comptc.2014.10.005

    Article  CAS  Google Scholar 

  64. Astani E, Heshmati E, Chen C-J, Hadipour NL, Shekarsaraei S (2016) A study of hydrogen bond effects on the oxygen, nitrogen, and hydrogen electric field gradient tensors in the active site of human dehydroepiandrosterone sulphotransferase: a density-functional theory based treatment. Chem Phys Lett 653:78–84. https://doi.org/10.1016/j.cplett.2016.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support received from São Paulo Research Foundation (FAPESP Grants 2014/15962-5, 2015/08539-1, 2017/17750-3, 2018/07308–4, and 2019/25634-9) and Coordination of Superior Level Staff Improvement (CAPES finance code 001 and Grant 23038.006960/2014-65); A.F.R. also acknowledges the support of The National Council for Scientific and Technological Development (CNPq 142342/2016-5). We also acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing the high performance computing resources of the SDumont supercomputer.

Funding

FAPESP: Grants 2014/15962-5, 2015/08539-1, 2017/17750-3, 2018/07308-4, and 2019/25634-9 CAPES: finance code 001 and Grant 23038.006960/2014-65 CNPq: Grant 142342/2016-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucas C. Ducati or Thiago C. Correra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Oliveira, A.F., Batista, P.R., Ducati, L.C. et al. Analyzing the N–H+π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO. Theor Chem Acc 139, 130 (2020). https://doi.org/10.1007/s00214-020-02643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02643-7

Keywords

Navigation