Skip to main content

Advertisement

Log in

DFT/TDDFT investigation on the structural and optical properties of Au13L clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ligand influence on the structural, electronic and optical properties of neutral \(\mathrm{Au}_{13}\mathrm{L}\) clusters, where \(\mathrm{L} = \mathrm{NH}_3\), \(\mathrm{N}(\mathrm{CH}_3)_3\), \(\mathrm{PH}_3\), \(\mathrm{P}(\mathrm{CH}_3)_3\), \(\mathrm{SCH}_3\), \(\mathrm{SCH}_2\mathrm{Ph}\), \(\mathrm{SCH}(\mathrm{CH}_3)\mathrm{NH}_2\), \(\mathrm{SCH}(\mathrm{CH}_3)\mathrm{Cl}\), SPh, \(\mathrm{SPhCH}_3\), SPhCOOH and \(\mathrm{SeCH}_3\), which has been investigated using density functional theory and its time-dependent approach. The analysis of the electronic stabilities reveals that the \(\mathrm{Au}_{13}\mathrm{SCH}(\mathrm{CH}_3)\mathrm{Cl}\) and \(\mathrm{Au}_{13}\mathrm{NH}_3\) are the most stable among the other clusters of the thiolate or selenolate and of the phosphine or amine-ligated groups, respectively. The ligand effect on the optical absorption spectra of \(\mathrm{Au}_{13}\mathrm{L}\) is relatively small, in which the main change is observed in the oscillator strength of the highest energy peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pykkö P (2004) Theoretical chemistry gold. Angew Chem Int 43:4412–4456

    Article  Google Scholar 

  2. Xu K-M, Wen H, Liu Y-R, Gai Y-B, Zhang W-J, Huang W (2013) A density functional study of phosphorus-doped gold clusters: \(\mathrm{Au}_n\mathrm{P}^-\). RSC Adv 3:24492–24502

    Article  CAS  Google Scholar 

  3. Scwerdtfeger P (2002) Relativistic effects in properties of gold. Heteroat Chem 13:578–584

    Article  Google Scholar 

  4. Shafai G, Hong S, Bertino M, Rahman TS (2009) Effect of ligands on the geometric and electronic structure of \(\mathrm{Au}_{13}\) clusters. J Phys Chem C 113:12072–12078

    Article  CAS  Google Scholar 

  5. Mollenhauer D, Gaston N (2016) Phosphine passivated gold clusters: how charge transfer affects electronic structure and stability. Phys Chem Chem Phys 18:29686–29697

    Article  CAS  PubMed  Google Scholar 

  6. Tian S, Siu F-M, Kui SCF, Lok C-N, Che C-M (2011) Anticancer gold (I)–phosphine complexes as potent autophagy-inducing agents. Chem Commun 47:9318–9320

    Article  CAS  Google Scholar 

  7. Li L, Gao Y, Li H, Pei Y, Chen Z, Zeng XC (2013) CO oxidation on \(\mathrm{TiO}_2\) (110) supported subnanometer gold clusters: size and shape effects. J Am Chem Soc 135:19336–19346

    Article  CAS  PubMed  Google Scholar 

  8. Muniz-Miranda F, Menziani MC, Pedone A (2014) On the opto-electronic properties of phosphine and thiolate-protected undecagold nanoclusters. Phys Chem Chem Phys 16:18749–18758

    Article  CAS  PubMed  Google Scholar 

  9. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Wan X-K, Ren L, Su H, Li G, Malola S, Lin S, Tang Z, Häkkinen H, Teo BK, Wang Q-M, Zheng N (2016) Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effects of surface ligands on catalysis by metal nanoparticles. J Am Chem Soc 138:3278–3281

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Qian H, Jin R (2011) Catalysis opportunities of atomically precise gold nanoclusters. J Mater Chem 21:6793–6799

    Article  CAS  Google Scholar 

  12. Wu Z, Hu G, Jiang D, Mullins DR, Zhang Q-F, Allard LF, Wang L-S, Overbury S (2016) Diphosphine-protected \(\mathrm{Au}_{22}\) nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett 16:6560–6567

    Article  CAS  PubMed  Google Scholar 

  13. Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique properties discoveries. Chem Soc Rev 41:3594–3623

    Article  CAS  PubMed  Google Scholar 

  14. Pundlik SS, Kalyanaraman K, Waghmare UV (2011) First-principles investigation of the atomic and electronic structure and magnetic moments in gold nanoclusters. J Phys Chem C 115:3809–3820

    Article  CAS  Google Scholar 

  15. Jin R, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 18:10346–10413

    Article  Google Scholar 

  16. Goel S, Velizhanin KA, Piryatinski A, Tretiak S, Ivanov S (2010) DFT study of ligand binding to small gold clusters. J Phys Chem Lett 1:927–931

    Article  CAS  Google Scholar 

  17. Golosnaya MN, Pichugina DA, Kuz’menko NE (2019) Structure and reactivity of gold cluster protected by triphosphine ligands: DFT study. J Struct Chem 30:501–507

    Article  CAS  Google Scholar 

  18. Machado ES, Rodrigues NM, Prado MVA, Dutra JDL, Júnior NBC, Felicíssimo VC (2019) Ligand and solvent effects on the structural and optical properties of \(\mathrm{Au}_{13}{\rm L}_8^{3+}\) clusters: a density functional theory study. J Braz Chem Soc 30:1458–1467

    Google Scholar 

  19. Taylor M, Mpourmpakis G (2017) Thermodynamic stability of ligand-protected metal nanoclusters. Nat Commun 8:15988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jung J, Kang S, Han Y-K (2012) Ligand effects on the stability of thiol-stabilized gold nanoclusters: \(\mathrm{Au}_{25}(\mathrm{SR})_{18}^-\), and \(\mathrm{Au}_{102}(\mathrm{SR})_{44}\). Nanoscale 4:4206–4210

    Article  CAS  PubMed  Google Scholar 

  21. Spivey K, Williams JI, Wang L (2006) Structures of undecagold clusters: ligand effect. Chem Phys Lett 432:163–166

    Article  CAS  Google Scholar 

  22. Chauhan V, Reber AC, Reber AC, Khanna S (2018) Strong lowering of ionization energy of metallic clusters by organic ligands without changing shell filling. Nat Commun 9:2357

    Article  PubMed  PubMed Central  Google Scholar 

  23. Batista RJC, Mazzoni MSC, Chacham H (2010) First-principles investigation of electrochemical properties of gold nanoparticles. Nanotechnology 21:065705

    Article  PubMed  Google Scholar 

  24. Ding W, Hunag C, Guan L, Liu X, Luo Z, Li W (2017) Water-soluble \(\mathrm{Au}_{13}\) clusters protected by binary thiolates: structural accommodation and the use for chemosensing. Chem Phys Lett 676:18–24

    Article  CAS  Google Scholar 

  25. Pillegowda M, Periyasamy G (2016) DFT studies on the influence of ligation on optical and redox properties of bimetallic [\(\mathrm{Au}_4\mathrm{M}_2\)] clusters. RSC Adv 6:86051–86060

    Article  CAS  Google Scholar 

  26. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 16 Revision B01

  28. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. The role of exact exhange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Krishna R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  33. Hay PJ, Wadt W (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  34. Larsson JA, Nolan M, Greer J (2002) Interaction between thiol molecular linkers and the \(\mathrm{Au}_{13}\) nanoparticle. J Phys Chem B 106:5931–5937

    Article  CAS  Google Scholar 

  35. Negishi Y, Tsukuda T (2003) One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. J Am Chem Soc 125(4046):2003 (125) 4046-4047

    Google Scholar 

  36. Guedes-Sobrinho D, Chaves AS, Piotrowski MJ, Da Silva J (2017) Density functional investigation of the adsorption effects of \(\mathrm{ PH }_3\) and \(\mathrm{ SH }_2\) on the structure stability of the \(\mathrm{Au}_{55}\) and \(\mathrm{ Pt }_{55}\) nanoclusters. J Chem Phys 146:16304-1–12

    Article  Google Scholar 

  37. Martinez A (2005) Bonding interactions of metal clusters [\(\mathrm{ M }_n\) (M= Cu, Ag, Au; n=1-4)] with ammonia. Are the metal clusters adequate as a model of surfaces? J Braz Chem Soc 16:337–344

    Article  CAS  Google Scholar 

  38. Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26:735–746

    Article  Google Scholar 

  39. Li X, Chen Y, Basnet P, Luo J, Wang H (2019) Probing the properties of size dependence and correlation for tantalum clusters: geometry, stability, vibrational spectra, magnetism, and electronic structure. RSC Adv 9:1015–1028

    Article  CAS  Google Scholar 

  40. Song Y, Zhong J, Yang S, Wang S, Cao T, Zhang J, Li P, Hu D, Pei Y, Zhu M (2014) Crystal structure of \(\mathrm{Au}_{25}\)(SePh)\(_{18}\) nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 6:13977–13985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe (FAPITEC/SE) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We thank professor Ricardo Luiz Longo of Universidade Federal de Pernambuco (UFPE) for providing the use of Gaussian09 program. The computing for this project was performed on the Pople Computational Chemistry Laboratory-UFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna S. Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, E.S., Rodrigues, N.M., Costa Júnior, N.B. et al. DFT/TDDFT investigation on the structural and optical properties of Au13L clusters. Theor Chem Acc 139, 74 (2020). https://doi.org/10.1007/s00214-020-02587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02587-y

Keywords

Navigation