Skip to main content
Log in

Solid solution strengthening mechanism and interstitial diffusion behavior of rare earth element lanthanum in austenite using first-principles calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Solid solution strengthening mechanism and interstitial diffusion behavior of RE element La in austenite (γ-Fe) were researched using first-principles calculation for improving the mechanical properties of austenitic stainless steel. The calculated results indicate that, for La atom solid solution γ-Fe, LaS γ-Fe shows the larger stability than LaOI γ-Fe and LaTI γ-Fe because of the smaller lattice distortion. LaOI γ-Fe and LaTI γ-Fe show the good plastic deformation capacity while LaS γ-Fe exhibits high brittleness because of the strong resistance to deformation and stiffness. Elastic anisotropy of LaOI γ-Fe is the strongest while that of LaS γ-Fe is the weakest, and the anisotropy is caused by the difference between the shear modulus G in xz plane and that in xy/yz planes. Fe–La chemical bonding in La atom solid solution γ-Fe is the typical metallic bonding but exhibits a certain degree of ionic characteristic, and the ionic characteristic of LaS γ-Fe is larger than that of LaOI γ-Fe and LaTI γ-Fe. Energy barrier for La atom diffuse between neighboring Oct sites is much larger than that between neighboring Tet sites, and from Oct site to Tet site in γ-Fe, which indicates that La atom diffuse between neighboring Oct sites is the most difficult. The reason is that, compared with Tet–Tet and Oct–Tet paths, the interaction between La atom at saddle point and the surrounding Fe atoms along Oct–Oct path is the strongest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu RL, Qu YJ, Yan MF, Fu YD (2012) Mechanical and corrosion resistant properties of martensitic stainless steel plasma nitrocarburized with rare earths addition. J Rare Earth 30:826–830

    Article  CAS  Google Scholar 

  2. Sartowska B, Piekoszewski J, Waliś L, Senatorski J, Barlak M, Starosta W, Pochrybniak C, Pokorska I (2011) Improvement of tribological properties of stainless steel by alloying its surface layer with rare earth elements using high intensity pulsed plasma beams. Surf Coat Technol 205:S124–S127

    Article  CAS  Google Scholar 

  3. Zhu YH, Zhuang J, Yu YS, Zeng XG (2013) Research on anti-corrosion property of rare earth inhibitor for X70 steel. J Rare Earth 31:734–740

    Article  CAS  Google Scholar 

  4. Preinfalk C, Morteani G (1989) The industrial applications of rare earth elements, lanthanides, tantalum and niobium. Springer, Berlin, pp 359–370

    Book  Google Scholar 

  5. Jiang MZ, Yu YC, Li H, Ren X, Wang SB (2017) Effect of rare earth cerium addition on microstructures and mechanical properties of low carbon high manganese steels. High Temp Mater Process 36:145–153

    CAS  Google Scholar 

  6. Ahn JH, Jung HD, Im JH, Jung KH, Moon BM (2016) Influence of the addition of gadolinium on the microstructure and mechanical properties of duplex stainless steel. Mater Sci Eng A 658:255–262

    Article  CAS  Google Scholar 

  7. Zhao YY, Wang JF, Zhou S, Wang XD (2014) Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel. Mater Sci Eng A 608:106–113

    Article  CAS  Google Scholar 

  8. Jung H, Kang J, Chun H, Han B (2018) First principles computational study on hydrolysis of hazardous chemicals phosphorus trichloride and oxychloride (PCl3 and POCl3) catalyzed by molecular water clusters. J Hazard Mater 341:457–463

    Article  Google Scholar 

  9. Li YY, Mao CX, Wu YY, Shi YF, Xue L, Li HL, Hu YH (2018) First principles study of the physical properties of Ti3AC2/Zr (A = Si, Al) van der Waals heterojunctions. J Phys Chem Solids 121:298–303

    Article  CAS  Google Scholar 

  10. Uğur S, Uğur G, Soyalp F, Ellialtıoğlu R (2009) Electronic structure calculations of rare-earth intermetallic compound YAg using ab initio methods. J Rare Earth 27:664–666

    Article  Google Scholar 

  11. Bian L, Song MX, Zhou TL et al (2009) Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2. J Rare Earth 27:461–468

    Article  Google Scholar 

  12. Blancá ELP (2016) First principle predictions of new crystal structures for hydrogen reservoirs. Int J Hydrog Energy 41:5682–5687

    Article  Google Scholar 

  13. Gupta SK, Pathak N, Ghosh PS, Kadam RM (2017) On the photophysics and speciation of actinide ion in MgAl2O4 spinel using photoluminescence spectroscopy and first principle calculation: a case study with uranium. J Alloys Compd 695:337–343

    Article  CAS  Google Scholar 

  14. Sun YL, Song HL, Yang Y, Hu JH, Wu CD, Chen ZY, Wu QH (2015) First-principles study of lithium insertion into Si10H16 cluster. Comput Theor Chem 1056:56–60

    Article  CAS  Google Scholar 

  15. Yang J, Huang JH, Ye Z, Fan DY, Chen SH, Zhao Y (2017) First-principles calculations on structural energetics of Cu–Ti binary system intermetallic compounds in Ag–Cu–Ti and Cu–Ni–Ti active filler metals. Ceram Int 43:7751–7761

    Article  CAS  Google Scholar 

  16. Liu GQ, Li QW, Qiu NX, He J, Huang Q, Luo K, Lin F, Lin CT, Du SY (2016) Structural, electronic and mechanical properties of (NbxTi1−x)2SC and (NbxZr1−x)2SC (0 ≤ x≤1) from first-principles investigations. Comput. Theor. Chem. 1090:58–66

    Article  CAS  Google Scholar 

  17. Kwasniak P, Garbacz H, Kurzydlowski KJ (2016) Solid solution strengthening of hexagonal titanium alloys: restoring forces and stacking faults calculated from first principles. Acta Mater 102:304–314

    Article  CAS  Google Scholar 

  18. Yang J, Huang JH, Fan DY, Chen SH, Zhao XK (2016) First-principles investigation on the interaction of Boron atom with Nickel part I: from surface adsorption to bulk diffusion. J Alloys Compd 663:116–122

    Article  CAS  Google Scholar 

  19. Yang J, Huang JH, Ye Z, Fan DY, Chen SH, Zhao Y (2017) First-principles investigation on the interaction of Boron atom with nickel part II: absorption and diffusion at grain boundary. J Alloys Compd 708:1089–1095

    Article  CAS  Google Scholar 

  20. Vallverdu G, Minvielle M, Andreu N, Gonbeau D, Baraille I (2016) First principle study of the surface reactivity of layered lithium oxides LiMO2 (M = Ni, Mn, Co). Surf Sci 649:46–55

    Article  CAS  Google Scholar 

  21. Ceperley DM, Alder BJ (1980) Exchange-correlation potential and energy for density-functional calculation. Phys Rev Lett 45:567–581

    Article  Google Scholar 

  22. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) D. of Physics and NOL 70118 J. Quantum Theory Group Tulane University. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  24. Arya A, Carter EA (2003) Structure, bonding, and adhesion at the TiC (100)/Fe (110) interface from first principles. J Chem Phys 118:8982–8996

    Article  CAS  Google Scholar 

  25. Elliott RO, Olsen CE, Louie J (1962) Electrical behavior below 300 K of plutonium-rich, delta-phase solid solution alloys containing cerium, aluminum and zinc. J Phys Chem Solids 23:1029–1044

    Article  CAS  Google Scholar 

  26. Du YA, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R (2011) First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Phys Rev B 84:144121

    Article  Google Scholar 

  27. Huang LH, Chen Q, He Y, Tao XM, Cai GM, Liu HS, Jin ZP (2014) Thermodynamic modeling of Fe–Ti–Bi system assisted with key experiments. Calphad 46:34–41

    Article  CAS  Google Scholar 

  28. Zhang L, Wang J, Du Y, Hu R, Nash P, Lu XG, Jiang C (2009) Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry first-principles and CALPHAD. Acta Mater 57:5324–5341

    Article  CAS  Google Scholar 

  29. Tokunaga T, Hanaya N, Ohtani H, Hasebe M (2007) Thermodynamic analysis of the Fe–Mn–P ternary phase diagram by combining the first-principles and CALPHAD methods. Mater Sci Forum 561:1899–1902

    Article  Google Scholar 

  30. Acet M, Zähres H, Wassermann EF, Pepperhoff W (1994) High-temperature moment-volume instability and anti-Invar of γ–Fe. Phys Rev B 49:6012–6017

    Article  CAS  Google Scholar 

  31. Mattesini M, Ahuja R, Johansson B (2003) Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys Rev B 68:184108

    Article  Google Scholar 

  32. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  33. Yang J, Huang JH, Fan DY, Chen SH (2016) First-principles investigation on the electronic property and bonding configuration of NbC (111)/NbN (111) interface. J Alloys Compd 689:874–884

    Article  CAS  Google Scholar 

  34. Kim HJ, Yoo SI (2012) Enhanced low field magnetoresistance in La0.7Sr0.3MnO3–La2O3 composites. J Alloys Compd 521:30–34

    Article  CAS  Google Scholar 

  35. Pamuk B, Baima J, Mauri F, Calandra M (2017) Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles. Phys Rev B 95:075422

    Article  Google Scholar 

  36. Kretschmer S, Komsa HP, Bøggild P, Krasheninnikov AV (2017) Structural transformations in two-dimensional transition-metal dichalcogenide MoS2 under an electron beam: insights from first-principles calculations. J Phys Chem Lett 8:3061–3067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for project funded by Fundamental Research Funds for the Central Universities (FRF-GF-18-003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyu Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Liu, C., Yin, F. et al. Solid solution strengthening mechanism and interstitial diffusion behavior of rare earth element lanthanum in austenite using first-principles calculations. Theor Chem Acc 139, 3 (2020). https://doi.org/10.1007/s00214-019-2513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2513-3

Keywords

Navigation