Skip to main content
Log in

First-principles study of solid solution strengthening in Mg–X (X=Al, Er) alloys

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To study the solid solution strengthening effect on magnesium (Mg)–X (X = Al, Er) alloys, supercell models of Mg, \(\hbox {Mg}_{35}\hbox {Er}\) and \(\hbox {Mg}_{35}\hbox {Al}\) are established to perform the first-principles pseudopotential plane wave calculations based on density functional theory. The calculated cohesive energy of \(\hbox {Mg}_{35}\hbox {Er}\) is lower than that of \(\hbox {Mg}_{35}\hbox {Al}\). This indicates that \(\hbox {Mg}_{35}\hbox {Er}\) has better structural stability than \(\hbox {Mg}_{35}\hbox {Al}\). The bulk modulus, Young’s modulus and shear modulus of the solid solutions increases simultaneously when Al and Er are doped into the Mg matrix. Moreover, the solid solution strengthening of Er is much higher than the Al containing alloy. The order of toughness of the three solutions from the highest to the lowest is Mg, \(\hbox {Mg}_{35}\hbox {Er}\) and \(\hbox {Mg}_{35}\hbox {Al}\), while the order of increasing elastic anisotropy is in the reverse order. The number of bonding electrons of \(\hbox {Mg}_{35}\hbox {Er}\) in the low-energy region of the Fermi level is much higher than that of \(\hbox {Mg}_{35}\hbox {Al}\), and the density of states of \(\hbox {Mg}_{35}\hbox {Er}\) at the Fermi level is higher than that of \(\hbox {Mg}_{35}\hbox {Al}\). Compared with Al atoms, Er atoms share more electric charges with Mg atoms, which leads to an increasingly uniform charge distribution around Er atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azzeddine H, Abdessameud S and Alili B 2011 Bull. Mater. Sci. 34 1417

    Article  Google Scholar 

  2. Gao L, Zhou J, Sun Z M, Chen R S and Han E H 2011 Chin. Sci. Bull. 56 1038

    Article  CAS  Google Scholar 

  3. Liu G, Zhang J and Dou Y 2015 Comput. Mater. Sci103 97

    CAS  Google Scholar 

  4. Liu Y, Ren H, Hu W C, Li D J, Zeng X Q and Wang K G 2016 J. Mater. Sci. Technol12 1222

    Article  Google Scholar 

  5. Ganeshan S, Shang S L, Wang Y and Liu Z K 2009 Acta Mater. 57 3876

    Article  CAS  Google Scholar 

  6. Vassiliki K T 2012 Phys. arXiv:1205.0928

  7. Wu Y and Hu W Y 2014 Phys. Res. Int2008 4

    Google Scholar 

  8. Wang W J, Liu Z L, Liu X Q, Zhang Z D and Wang Q D 2014 Chin. J. Nonferr. Met. 24 343

    CAS  Google Scholar 

  9. Rokhlin L L, Nikitina N I and Zolina Z K 1978 Met. Sci. Heat Treat20 529

    Article  Google Scholar 

  10. Payne M C, Teter M P and Allan D C 1992 Rev. Mod. Phys64 1045

    Article  CAS  Google Scholar 

  11. Khan A, Ali Z and Khan I 2016 Bull. Mater. Sci. 39 1861

    Article  CAS  Google Scholar 

  12. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  13. Blöchl P E 1994 Phys. Rev. B 50 17953

    Article  Google Scholar 

  14. Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Article  CAS  Google Scholar 

  15. Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768

    Article  CAS  Google Scholar 

  16. Bendaif S, Boumaza A and Nemiri O 2015 Bull. Mater. Sci. 38 365

    Article  CAS  Google Scholar 

  17. Vanderbilt D 1990 Phys. Rev. B 41 7892

    Article  CAS  Google Scholar 

  18. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  19. Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380

    Article  CAS  Google Scholar 

  20. Von-Batchelder F W and Raeuchle R F 1957 Phys. Rev. 105 59

    Article  CAS  Google Scholar 

  21. Hardie D and Parkins R N 1959 Philos. Mag. 4 815

    Article  CAS  Google Scholar 

  22. Raynor G V 1942 Proc. R. Soc. A 180 107

    CAS  Google Scholar 

  23. Barrett C and Massalski T B 1987 Structure of metals (New York: Pergamon Press)

    Google Scholar 

  24. Shein I R and Ivanovskii A L 2008 J. Phys20 415218

    Google Scholar 

  25. Nye J F 1964 Physical properties of crystals (Oxford: Clarendon Press)

    Google Scholar 

  26. Wazzan A R and Robinson L B 1967 Phys. Rev. 155 586

    Article  CAS  Google Scholar 

  27. Slutsky L J and Garland C W 1957 Phys. Rev. 107 972

    Article  CAS  Google Scholar 

  28. Yang F, Fan T W, Wu J, Tang B Y, Peng L M and Ding W J 2011 Phys. Status Solidi B 248 2809

    Article  CAS  Google Scholar 

  29. Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig, Teubner)

    Google Scholar 

  30. Reuss A 1929 Z. Angew. Math. Mech9 49

    Article  CAS  Google Scholar 

  31. Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) 60

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2016YFB0301002), the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2016039), Six Peak Talent Project of Jiangsu Province (2014-XCL-005) and Suzhou Science and Technology Development Project (SGC201534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Z., Liu, G. et al. First-principles study of solid solution strengthening in Mg–X (X=Al, Er) alloys. Bull Mater Sci 42, 16 (2019). https://doi.org/10.1007/s12034-018-1687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1687-y

Keywords

Navigation