Skip to main content
Log in

Density functional studies on structural, electronic and magnetic properties of Rhn (n = 9–20) clusters and O–H bond of methanol activation by pure and ruthenium-doped rhodium clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Methodical exploration is performed on Rhn (n = 9–20) clusters in the gas phase with all electron relativistic methods using density functional theory (DFT) within the generalized gradient approximation. Neutral clusters with even atoms of rhodium and ionic clusters containing odd atoms of rhodium are optimized with odd multiplicities, while neutral clusters containing odd rhodium atoms and ionic cluster having even atoms of rhodium are optimized with even multiplicities. DFT-based structural and reactivity parameters such as stability function, dissociation energy, HOMO–LUMO gap, ionization potential and electron affinity reveal higher stability of Rh13, Rh14 and Rh19 clusters. Among these clusters, icosahedral Rh13 is obtained to be the most stable. Magnetic moment and spin density analysis suggest nonzero magnetic moment for all clusters. DOS study reveals higher contribution of d electron density in bonding. Further, stable rhodium cluster-catalyzed O–H bond activation of methanol has been investigated. Rh 13 and Rh14 are found to have higher activity towards O–H activation. Ruthenium-doped rhodium clusters have also been utilized to investigate the reactivity and catalytic activity of the same reaction and found to exhibit higher activity. Among all alloy clusters, Rh18Ru dissociates O–H more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Proceedings of the sixth international meeting on small particles and inorganic clusters. Chicago (1992). Z Phys D 26 (1993)

  2. Wohlfarth EP (1985) Phys Status Solidi (a) 91:339

    Article  CAS  Google Scholar 

  3. Zapkin MR, Cox DM, Brickman RO, Kaldor AJ (1989) J Phys Chem 93:6823

    Article  Google Scholar 

  4. Gingerich KA, Cocke DL (1972) J Chem Soc Chem Commun 1:536

    Article  Google Scholar 

  5. Wang H, Haouari H, Craig R, Liu Y, Lombardi JR, Lindsay DM (1997) J Chem Phys 106:2101

    Article  CAS  Google Scholar 

  6. Cox AJ, Louderback JG, Bloomfield LA (1993) Phys Rev Lett 71:923

    Article  PubMed  CAS  Google Scholar 

  7. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Phys Rev B 49:12295

    Article  CAS  Google Scholar 

  8. Van Zee RJ, Hamrick YM, Li S, Weltner W (1992) Chem Phys Lett 195:214

    Article  Google Scholar 

  9. Shim I (1985) Mat Fys Medd Dan Vid Selsk 41:147

    Google Scholar 

  10. Balasubramanian K, Liao DW (1989) J Phys Chem 93:3989

    Article  CAS  Google Scholar 

  11. Illas F, Rubio J, Canellas J, Ricart JM (1990) J Chem Phys 93:2603

    Article  CAS  Google Scholar 

  12. Goursot A, Papai I, Daul CA (1994) Int J Quantum Chem 52:799

    Article  CAS  Google Scholar 

  13. Jinlong Y, Toigo F, Kelin W (1994) Phys Rev B 50:7915

    Article  CAS  Google Scholar 

  14. Galicia R (1985) Rev Mex Fis 32:51

    CAS  Google Scholar 

  15. Reddy BV, Khanna SN, Dunlap BI (1993) Phys Rev Lett 70:3323

    Article  PubMed  CAS  Google Scholar 

  16. Lee K (1997) Z Phys D Atoms Mol Clusters 40:164

    Article  CAS  Google Scholar 

  17. Guirado-Lopez R, Spanjaard D, Desjonqueres MC, Aguilera-Granja F (1998) J Magn Magn Mater 186:214

    Article  CAS  Google Scholar 

  18. Guevara J, Llois AM, Aguilera-Granja F, Montejano-Carrizales JM (1999) Solid State Commun 111:335

    Article  CAS  Google Scholar 

  19. Li ZQ, Yu JZ, Ohno K, Kawazoe Y (1995) J Phys Condens Matter 7:47

    Article  Google Scholar 

  20. Piveteau B, Desjongueres MC, Oles AM, Spanjaard D (1996) Phys Rev B 53:9251

    Article  CAS  Google Scholar 

  21. Zhang GW, Feng YP, Ong CK (1996) Phys Rev B 54:17208

    Article  CAS  Google Scholar 

  22. Nayak SK, Weber SE, Jena P, Wildberger K, Zeller R, Dederichs PH, Stepanyuk VS, Hergert W (1997) Phys Rev B 56:8849

    Article  CAS  Google Scholar 

  23. Villasenor-Gonzalez P, Dorantes-Davila J, Dreysse H, Pastor GM (1997) Phys Rev B 55:15084

    Article  CAS  Google Scholar 

  24. Chien CH, Barojas EB, Pederson MR (1998) Phys Rev A 58:2196

    Article  CAS  Google Scholar 

  25. Guirado-Lopez R, Spanjaard D, Desjonqueres MC (1998) Phys Rev B 57:6305

    Article  CAS  Google Scholar 

  26. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Phys Rev B 59:5214

    Article  CAS  Google Scholar 

  27. Granja FA, Rodriguez-Lopez JL, Michaelian K, Berlanga-Ramirez EO, Vega A (2002) Phys Rev B 66:224410

    Article  Google Scholar 

  28. Parks EK, Nieman GC, Kerns KP, Riely SJ (1997) J Chem Phys 107:1861

    Article  CAS  Google Scholar 

  29. Xing X, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423

    Article  Google Scholar 

  30. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674

    Article  PubMed  CAS  Google Scholar 

  31. Kumar V, Kawazoe Y (2002) Phys Rev B 66:144413

    Article  Google Scholar 

  32. Kumar V, Kawazoe Y (2003) Eur Phys J D 24:81

    Article  CAS  Google Scholar 

  33. Barreteau C, Guirado-Lopez R, Spanjaard D, Desjonqueres MC, Oles AM (2000) Phys Rev B 61:7781

    Article  CAS  Google Scholar 

  34. Guirado-Lopez R, Desjonqueres MC, Spanjaard D (2000) Phys Rev B 62:13188

    Article  CAS  Google Scholar 

  35. Morrison SR (1977) The chemical physics of surfaces. Plenum Pres, New York

    Book  Google Scholar 

  36. Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley and Sons, New York

    Google Scholar 

  37. Hopstaken MJP, Niemantsverdriet JW (2000) J Chem Phys 113:5457

    Article  CAS  Google Scholar 

  38. Campbell CT, Shi SK, White JM (1979) J Phys Chem 83:2255

    Article  CAS  Google Scholar 

  39. Colonell JI, Gibson KD, Sibener SJ (1995) J Chem Phys 103:6677

    Article  CAS  Google Scholar 

  40. Peden CHF, Goodman DW, Blair DS, Berlowitz PJ, Fisher GB, Oh SH (1988) J Phys Chem 92:1563

    Article  CAS  Google Scholar 

  41. Garin F (2001) Appl Catal A 222:183

    Article  CAS  Google Scholar 

  42. Comelli G, Dhanak VR, Kiskinova M, Prince KC, Rosei R (1998) Surf Sci Rep 32:165

    Article  CAS  Google Scholar 

  43. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

    Article  PubMed  CAS  Google Scholar 

  44. Chung SH, Hoffmann A, Guslienko K, Bader SD, Liu C, Kay B, Makowski L, Chen L (2005) J Appl Phys 97:10R101

    Article  Google Scholar 

  45. Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884

    Article  PubMed  CAS  Google Scholar 

  46. Tsang SC, Yu CH, Gao X, Tam K (2006) J Phys Chem B 110:16914

    Article  PubMed  CAS  Google Scholar 

  47. Burgel C, Reilly NM, Johnson GE, Mitric R, Kimble ML, Castleman AW, Koutecky VB (2008) J Am Chem Soc 130:1694

    Article  PubMed  Google Scholar 

  48. Hanmura T, Ichihashi M, Watanabe Y, Isomura N, Kondow T (2007) J Phys Chem A 111:422

    Article  PubMed  CAS  Google Scholar 

  49. Swart I, Fielicke A, Redlich B, Meijer G, Weckhuysen BM, de Groot FMF (2007) J Am Chem Soc 129:2516

    Article  PubMed  CAS  Google Scholar 

  50. Anderson ML, Ford MS, Derrick PJ, Drewello T, Woodruff DP, Mackenzie SR (2006) J Phys Chem A 110:10992

    Article  PubMed  CAS  Google Scholar 

  51. Ford MS, Anderson ML, Barrow MP, Woodruff DP, Drewello T, Derrick PJ, Mackenzie SR (2005) Phys Chem Chem Phys 7:975

    Article  PubMed  CAS  Google Scholar 

  52. Dutta A, Mondal P (2017) Comp Theo Chem 1115:284

    Article  CAS  Google Scholar 

  53. Dutta A, Mondal P (2018) J Chem Sci 130:1

    Article  CAS  Google Scholar 

  54. Delley B, Ellis DE (1982) J Chem Phys 76:1949

    Article  CAS  Google Scholar 

  55. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  56. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  57. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  58. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  59. Delley B (1998) Int J Quantum Chem 69:423

    Article  CAS  Google Scholar 

  60. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  61. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  PubMed  CAS  Google Scholar 

  62. Ghatak K, Sengupta T, Pal S (2015) Theor Chem Acc 134:1597

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Department of Science and Technology (DST), New Delhi, India, for financial support (SB/EMEQ-214/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paritosh Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Mondal, P. Density functional studies on structural, electronic and magnetic properties of Rhn (n = 9–20) clusters and O–H bond of methanol activation by pure and ruthenium-doped rhodium clusters. Theor Chem Acc 138, 7 (2019). https://doi.org/10.1007/s00214-018-2399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2399-5

Keywords

Navigation