Skip to main content
Log in

A simple and operational test for external connectivity of tensors in many-body methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Size extensivity of the correlation energy is a crucial property of many-body methods (e.g., coupled cluster, Rayleigh–Schrödinger perturbation theory). It is related to the connectivity of the energy expression which itself relies on the connectivity of the amplitude tensors. Before the introduction of the concept of “generalized extensivity” by Nooijen et al. (Mol Phys 103:2277, 2005) there was no operational test to check for extensivity. The latter probes for connectivity of the energy by testing for separability using an artificial manipulation of the two-electron integrals according to varying partitionings of the orbitals. The present work tests for external connectivity of the wave operator and does not require specially crafted two-electron integrals but access to the values of the individual amplitudes and Coulomb integrals. External connectivity refers to the R-scaling of tensor entries with respect to the distance between the centers of the localized orbital indices. In contrast to “generalized extensivity” the present test does not detect disconnected closed diagrams within a tensor. Since standard coupled cluster tensors are always connected a diagrammatic analysis focuses on tensors related to various configuration interaction methods. In this respect the present work is complementary to that of Lyakh and Bartlett (Mol Phys 112:213, 2014) using algebraic techniques. The theoretical results are confirmed by the proposed operational external connectivity check. The proposed ansatz gives some insight into the property of connectivity especially the meaning of cluster lines and may be easily applied to other, particularly multi-reference coupled cluster, methods to check numerically for proper external connectivity of the amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brueckner KA (1955) Phys Rev 100:36

    Article  CAS  Google Scholar 

  2. Goldstone J (1956) Proc R Soc A 239:267

    Article  Google Scholar 

  3. Hubbard J (1957) Proc R Soc A 240:539

    Article  Google Scholar 

  4. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  5. Coester F (1958) Nucl Phys 7:421

    Article  Google Scholar 

  6. Coester F, Kümmel H (1960) Nucl Phys 17:477

    Article  CAS  Google Scholar 

  7. Cizek J (1966) J Chem Phys 45:4256

    Article  CAS  Google Scholar 

  8. Cizek J (1969) Adv Chem Phys 14:35

    CAS  Google Scholar 

  9. Cizek J, Paldus J (1971) Int J Quantum Chem 5:359

    Article  CAS  Google Scholar 

  10. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 14:561

    Article  CAS  Google Scholar 

  11. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545

    Article  CAS  Google Scholar 

  12. Nooijen M, Bartlett RJ (1997) Int J Quantum Chem 63:601

    Article  CAS  Google Scholar 

  13. Hirata S (2011) Theor Chem Acc 129:727

    Article  CAS  Google Scholar 

  14. Lyakh DI (2012) Mol Phys 110:1469

    Article  CAS  Google Scholar 

  15. Lyakh DI, Bartlett RJ (2014) Mol Phys 112:213

    Article  CAS  Google Scholar 

  16. Nooijen M, Shamasundar KR, Mukherjee D (2005) Mol Phys 103:2277

    Article  CAS  Google Scholar 

  17. Hanrath M (2009) Chem Phys 356:31

    Article  CAS  Google Scholar 

  18. Shavitt I, Bartlett R J (2009) Many-body methods in chemistry and physics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Crawford TD, Schaefer HF III (2000) Rev Comput Chem 14:33

    CAS  Google Scholar 

  20. Bomble YJ, Stanton JF, Kallay M, Gauss J (2005) J Chem Phys 123:54101

    Article  CAS  Google Scholar 

  21. Brandow BH (1967) Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  22. Hanrath M (2018a) On the nature of connectivity: II. N-scaling of tensors and diagrams for coulomb interactions. Mol Phys (submitted)

  23. Harris F E, Monkhorst H J, Freeman D L (1992) Algebraic and diagrammatic methods in many-Fermion theory, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  24. Hanrath M (2018b) On the nature of connectivity: I. R-scaling of tensors and diagrams for coulomb interactions. Mol Phys (submitted)

  25. Roothaan C (1951) J Chem Phys 19:1445

    Article  CAS  Google Scholar 

  26. Hetzer G, Pulay P, Werner H-J (1998) Chem Phys Lett 290:143

    Article  CAS  Google Scholar 

  27. Schütz M, Werner H-J (2000) J Chem Phys 114:661

    Article  Google Scholar 

  28. Jeziorski B, Monkhorst HJ (1981) Phys Rev A 24:1668

    Article  CAS  Google Scholar 

  29. Hirata S, Podeszwa R, Tobita M, Bartlett RJ (2004) J Chem Phys 120:2581

    Article  CAS  PubMed  Google Scholar 

  30. Kertesz M (1982) Adv Quantum Chem 15:161

    Article  CAS  Google Scholar 

  31. Cloizeaux J  des (1964) Phys Rev A 135:685

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Michael Dolg for his continuous support. This paper is dedicated to his 60th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hanrath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanrath, M. A simple and operational test for external connectivity of tensors in many-body methods. Theor Chem Acc 137, 86 (2018). https://doi.org/10.1007/s00214-018-2265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2265-5

Keywords

Navigation