Skip to main content

Advertisement

Log in

Importance of one-parameter hybrid exchange-correlation functionals in band gaps of transition metal and metalloid oxides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, the effect of the exact exchange in hybrid functionals based on one parameter is explored over the electronic structure of \(\hbox {Ti}_2\hbox {O}_3\), \(\hbox {V}_2\hbox {O}_3\), \(\hbox {Cr}_2\hbox {O}_3\), \(\hbox {Fe}_2\hbox {O}_3\), \(\hbox {MnO}, \hbox {SiO}_2\), \(\hbox {GeO}_2\), and \(\hbox {SnO}_2\), such that oxides with different nature are included in this data set. Structural parameters and magnetic states of these oxides are reproduced according to experimental information, which are discussed in the context of the exact exchange inclusion. Several exchange-correlation functionals are considered to reach this goal, two of them, HSE06 and B1WC, which were designed ad hoc to study metal oxides are contrasted with hybrid exchange-correlation functionals that contain a fraction (\(\alpha \)) of the exact exchange, like PBE0. Thus, in this work, hybrid functionals where \(\alpha \) is varied systematically provide a linear relationship between band gap and \(\alpha \), which gives one way to match the theoretical band gap with experimental information. If this optimum \(\alpha \) is used to predict cell parameters or bulk modulus, then the corresponding results are close to experimental data. For the systems considered in this work, all-electron calculations were performed using a periodic ab initio code, which uses Gaussian localized basis set functions for the expansion of Bloch orbitals by linear combinations of atomic orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sandratskii LM, Uhl M, Kübler J (1996) Band theory for electronic and magnetic properties of \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\). J Phys Condens Matter 8:983–989

    Article  CAS  Google Scholar 

  2. Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107

    Article  CAS  Google Scholar 

  3. Mochizuki S (1977) Electrical conductivity of \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\). Phys Status Solidi A 41:591–594

    Article  CAS  Google Scholar 

  4. Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2008) Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516:1716–1724

    Article  CAS  Google Scholar 

  5. Mattheiss. LF (1996) Electronic structure of rhombohedral \({\text{ Ti }}_2{\text{ O }}_3\). J Phys Condens Matter 8:5987–5995

    Article  CAS  Google Scholar 

  6. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263

    Article  CAS  Google Scholar 

  7. Shin SH, Chandrashekhar GV, Loehman RE, Honig JM (1973) Thermoelectric effects in pure and V-doped \(\text{ Ti }_2\text{ O }_3\) single crystals. Phys Rev B 8:1364–1372

    Article  CAS  Google Scholar 

  8. Adler D (1968) Insulating and metallic states in transition metal oxides. In: Seitz F (ed) Solid state physics, vol 21. Academic Press, New York, pp 1–115

    Google Scholar 

  9. Gillen R, Robertson J (2013) Accurate screened exchange band structures for the transition metal monoxides MnO, FeO, CoO and NiO. J Phys Condens Matter 25:165502

    Article  CAS  Google Scholar 

  10. Marques MAL, Vidal J, Oliveira MJT, Reining L, Botti S (2011) Density-based mixing parameter for hybrid functionals. Phys Rev B 83:035119

    Article  CAS  Google Scholar 

  11. Gerosa M, Bottani CE, Caramella L, Onida G, di Valentin C, Pacchioni G (2015) Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against GW band structure calculations and experiments. Phys Rev B 91:155201

    Article  CAS  Google Scholar 

  12. Ravindra NM, Weeks RA, Kinser DL (1987) Optical-properties of \({\text{ GeO }}_2\). Phys Rev B 36:6132–6134

    Article  CAS  Google Scholar 

  13. Yamanaka T, Kurashima R, Mimaki J (2000) X-ray diffraction study of bond character of rutile-type \({\text{ SiO }}_2\), \({\text{ GeO }}_2\) and \({\text{ SnO }}_2\). Z Kristallogr 215:424–428

    CAS  Google Scholar 

  14. Mimaki J, Tsuchiya T, Yamanaka T (2000) The bond character of rutile type \({\text{ SiO }}_2\), \({\text{ GeO }}_2\) and \({\text{ SnO }}_2\) investigated by molecular orbital calculation. Z Kristallogr 215:419–423

    CAS  Google Scholar 

  15. Micoulaut M, Cormier L, Henderson GS (2006) The structure of amorphous, crystalline and liquid \(\text{ GeO }_2\). J Phys Condes Matter 18:R753–R784

    Article  CAS  Google Scholar 

  16. Sevik C, Bulutay C (2007) Theoretical study of the insulating oxides and nitrides: \(\text{ SiO }_2\), \(\text{ GeO }_2\), \({\text{ Al }}_2{\text{ O }}_3\), \({\text{ Si }}_3{\text{ N }}_4\), and \({\text{ Ge }}_3{\text{ N }}_4\). J Mater Sci 42:6555–6565

    Article  CAS  Google Scholar 

  17. Shaposhnikov AV, Perevalov TV, Gritsenko VA, Cheng CH, Chin A (2012) Mechanism of \(\text{ GeO }_2\) resistive switching based on the multi-phonon assisted tunneling between traps. Appl Phys Lett 100:243506

    Article  CAS  Google Scholar 

  18. Singh H, Singh M, Kumar S, Kashyap MK (2011) Full potential calculation of electronic properties of rutile \({\text{ RO }}_2\) (R=Si, Ge, Sn and Pb) compounds via modified Becke Johnson potential. Phys B Condens Matter 406:3825–3830

    Article  CAS  Google Scholar 

  19. Liu QJ, Liu ZT (2014) Structural, elastic, and mechanical properties of germanium dioxide from first-principles calculations. Mater Sci Semicond Process 27:765–776

    Article  CAS  Google Scholar 

  20. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys Condens Matter 9:767–808

    Article  CAS  Google Scholar 

  21. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  22. Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998) Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of \(\text{ UO }_2\) and NiO. Phys Status Solidi A 166:429–443

    Article  CAS  Google Scholar 

  23. Rohrbach A, Hafner J, Kresse G (2003) Electronic correlation effects in transition-metal sulfides. J Phys Condens Matter 15:979–996

    Article  CAS  Google Scholar 

  24. Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B 73:195107

    Article  CAS  Google Scholar 

  25. Wang YC, Chen ZH, Jiang H (2016) The local projection in the density functional theory plus U approach: a critical assessment. J Chem Phys 144:144106

    Article  CAS  Google Scholar 

  26. Pozun ZD, Henkelman G (2011) Hybrid density functional theory band structure engineering in hematite. J Chem Phys 134:224706

    Article  CAS  Google Scholar 

  27. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2010) First-principles modeling of localized \(d\) states with the GW\(@\)LDA + U approach. Phys Rev B 82:045108

    Article  CAS  Google Scholar 

  28. Perdew JP, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies: band gaps and derivative discontinuities. Phys Rev Lett 51:1884–1887

    Article  CAS  Google Scholar 

  29. Sham LJ, Schlüter M (1985) Density-functional theory of the band gap. Phys Rev B 32:3883–3889

    Article  CAS  Google Scholar 

  30. Görling A (2015) Exchange-correlation potentials with proper discontinuities for physically meaningful Kohn–Sham eigenvalues and band structures. Phys Rev B 91:245120

    Article  CAS  Google Scholar 

  31. Cencek W, Szalewicz K (2013) On asymptotic behavior of density functional theory. J Chem Phys 139:024104

    Article  CAS  Google Scholar 

  32. Garza J, Nichols JA, Dixon DA (2000) The optimized effective potential and the self-interaction correction in density functional theory: application to molecules. J Chem Phys 112:7880–7890

    Article  CAS  Google Scholar 

  33. Kummel S, Kronik L (2008) Orbital-dependent density functionals: theory and applications. Rev Mod Phys 80:3–60

    Article  CAS  Google Scholar 

  34. Gopal P, Fornari M, Curtarolo S, Agapito LA, Liyanage LSI, Nardelli MB (2015) Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional. Phys Rev B 91:245202

    Article  CAS  Google Scholar 

  35. Unal H, Gunceler D, Gulseren O, Ellialtioglu S, Mete E (2015) Hybrid functional calculated optical and electronic structures of thin anatase \(\text{ TiO }_2\) nanowires with organic dye adsorbates. Appl Surf Sci 354:437–442

    Article  CAS  Google Scholar 

  36. Seo DH, Urban A, Ceder G (2015) Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Phys Rev B 92:115118

    Article  CAS  Google Scholar 

  37. Burke K, Ernzerhof M, Perdew JP (1997) The adiabatic connection method: a non-empirical hybrid. Chem Phys Lett 265:115–120

    Article  CAS  Google Scholar 

  38. Cortona P (2012) Theoretical mixing coefficients for hybrid functionals. J Chem Phys 136:086101

    Article  CAS  Google Scholar 

  39. Guido CA, Brémond E, Adamo C, Cortona P (2013) Communication: one third: a new recipe for the PBE0 paradigm. J Chem Phys 138:021104

    Article  CAS  Google Scholar 

  40. Tran F, Blaha P, Schwarz K, Novák P (2006) Hybrid exchange-correlation energy functionals for strongly correlated electrons: applications to transition-metal monoxides. Phys Rev B 74:155108

    Article  CAS  Google Scholar 

  41. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  42. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  43. Demichelis R, Civalleri B, Ferrabone M, Dovesi R (2010) On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int J Quantum Chem 110:406–415

    Article  CAS  Google Scholar 

  44. De La Pierre M, Orlando R, Maschio L, Doll K, Ugliengo P, Dovesi R (2011) Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite \(\text{ Mg }_2\text{ SiO }_4\). J Comput Chem 32:1775–1784

    Article  CAS  Google Scholar 

  45. Többens DM, Kahlenberg V (2011) Improved DFT calculation of Raman spectra of silicates. Vib Spectrosc 56:265–272

    Article  CAS  Google Scholar 

  46. Liu C, Peterson C, Wilson AK (2013) C–O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals. J Phys Chem A 117:5140–5148

    Article  CAS  Google Scholar 

  47. Martínez-Casado R, Chen VHY, Mallia G, Harrison NM (2016) A hybrid-exchange density functional study of the bonding and electronic structure in bulk \(\text{ CuFeS }_2\). J Chem Phys 144:184702

    Article  CAS  Google Scholar 

  48. De Fusco GC, Pisani L, Montanari B, Harrison NM (2009) Density functional study of the magnetic coupling in \(\text{ V }{(\text{ TCNE })}_{2}\). Phys Rev B 79:085201

    Article  CAS  Google Scholar 

  49. Brothers EN, Izmaylov AF, Normand JO, Barone V, Scuseria GE (2008) Accurate solid-state band gaps via screened hybrid electronic structure calculations. J Chem Phys 129:011102

    Article  CAS  Google Scholar 

  50. Garza AJ, Scuseria GE (2016) Predicting band gaps with hybrid density functionals. J Phys Chem Lett 7:4165–4170

    Article  CAS  Google Scholar 

  51. Iori F, Gatti M, Rubio A (2012) Role of nonlocal exchange in the electronic structure of correlated oxides. Phys Rev B 85:115129

    Article  CAS  Google Scholar 

  52. Shimazaki T, Asai Y (2008) Band structure calculations based on screened Fock exchange method. Chem Phys Lett 466:91–94

    Article  CAS  Google Scholar 

  53. Koller D, Blaha P, Tran F (2013) Hybrid functionals for solids with an optimized Hartree–Fock mixing parameter. J Phys Condens Matter 25:435503

    Article  CAS  Google Scholar 

  54. Viñes F, Lamiel-García O, Chul-Ko K, Yong-Lee J, Illas F (2017) Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides. J Comput Chem 38:781–789

    Article  CAS  Google Scholar 

  55. Skone JH, Govoni M, Galli G (2014) Self-consistent hybrid functional for condensed systems. Phys Rev B 89:195112

    Article  CAS  Google Scholar 

  56. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796

    Article  Google Scholar 

  57. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659

    Article  CAS  Google Scholar 

  58. Alkauskas A, Broqvist P, Devynck F, Pasquarello A (2008) Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. Phys Rev Lett 101:106802

    Article  CAS  Google Scholar 

  59. Alkauskas A, Broqvist P, Pasquarello A (2011) Defect levels through hybrid density functionals: insights and applications. Phys Status Solidi B 248:775–789

    Article  CAS  Google Scholar 

  60. Catti M, Valerio G, Dovesi R (1995) Theoretical study of electronic, magnetic, and structural properties of \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\) (hematite). Phys Rev B 51:7441–7450

    Article  CAS  Google Scholar 

  61. Catti M, Sandrone G, Valerio G, Dovesi R (1996) Electronic, magnetic and crystal structure of \(\text{ Cr }_2\text{ O }_3\) by theoretical methods. J Phys Chem Solids 57:1735–1741

    Article  CAS  Google Scholar 

  62. Catti M, Sandrone G (1997) Ab initio study of corundum-like \(\text{ Me }_2\text{ O }_3\) oxides (Me = Ti, V, Cr, Fe Co, Ni). Faraday Discuss 106:189–203

    Article  CAS  Google Scholar 

  63. Catti M, Sandrone G, Dovesi R (1997) Periodic unrestricted Hartree–Fock study of corundumlike \(\text{ Ti }_2\text{ O }_3\) and \(\text{ V }_2\text{ O }_3\). Phys Rev B 55:16122–16131

    Article  CAS  Google Scholar 

  64. Towler MD, Allan NL, Harrison NM, Saunders VR, Mackrodt WC, Aprà E (1994) Ab initio study of MnO and NiO. Phys Rev B 50:5041–5041

    Article  CAS  Google Scholar 

  65. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P et al (2014) Crystal14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317

    Article  CAS  Google Scholar 

  66. Towler M (2017) Crystal resources page. http://www.tcm.phy.cam.ac.uk/mdt26/crystal.html. Accessed on Oct 2017

  67. D’Arco P, Sandrone G, Dovesi R, Orlando R, Saunders VR (1993) A quantum-mechanical study of the perovskite structure type of \(\text{ MgSiO }_3\). Phys Chem Miner 20:407–414

    Google Scholar 

  68. CRYSTAL Theoretical Chemistry Group (2017) Basis sets library. http://www.crystal.unito.it/basis-sets.php. Accessed 10 Oct 2017

  69. Corà F (2005) The performance of hybrid density functionals in solid state chemistry: the case of \(\text{ BaTiO }_3\). Mol Phys 103:2483–2496

    Article  CAS  Google Scholar 

  70. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  71. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: hybrid functionals based on a screened coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906

    Article  CAS  Google Scholar 

  72. Bilc DI, Orlando R, Shaltaf R, Rignanese GM, Íniguez J, Ghosez P (2008) Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B 77:165107

  73. Canepa P, Hanson RM, Ugliengo P, Alfredsson M (2011) J-ICE: a new Jmol interface for handling and visualizing crystallographic and electronic properties. J Appl Crystallogr 44:225–229

    Article  CAS  Google Scholar 

  74. Perger WF, Criswell J, Civalleri B, Dovesi R (2009) Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput Phys Commun 180:1753–1759

    Article  CAS  Google Scholar 

  75. Erba A, Mahmoud A, Orlando R, Dovesi R (2014) Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Miner 41:151–160

    Article  CAS  Google Scholar 

  76. Freier S, Greenshpan M, Hillman P, Shechter H (1962) The antiferromagnetic Curie point in \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\). Phys Lett 2:191–192

    Article  CAS  Google Scholar 

  77. Lielmezs J, Chaklader ACD (1965) Reversible thermal effect in \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\) at \(690^{\circ }\pm 5^{\circ }\text{ C }\). J Appl Phys 36:866

    Article  CAS  Google Scholar 

  78. Fender BEF, Jacobson AJ, Wedgwood FA (1968) Covalency parameters in MnO, \(\alpha \)-MnS, and NiO. J Chem Phys 48:990–994

    Article  CAS  Google Scholar 

  79. Brockhouse BN (1953) Antiferromagnetic structure in \(\text{ Cr }_2\text{ O }_3\). J Chem Phys 21:961–962

    Article  CAS  Google Scholar 

  80. Guo Y, Clark SJ, Robertson J (2012) Electronic and magnetic properties of \(\text{ Ti }_2\text{ O }_3\), \(\text{ Cr }_2\text{ O }_3\), and \(\text{ Fe }_2\text{ O }_3\) calculated by the screened exchange hybrid density functional. J Phys Condens Matter 24:325504

    Article  CAS  Google Scholar 

  81. Hu Z, Metiu H (2011) Choice of U for DFT + U calculations for titanium oxides. J Phys Chem C 115:5841–5845

    Article  CAS  Google Scholar 

  82. Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of \(\text{ Fe }_2\text{ O }_3\), \(\text{ Cr }_2\text{ O }_3\), and \(\text{ V }_2\text{ O }_3\) to 50 kbars. J Appl Phys 51:5362–5367

    Article  CAS  Google Scholar 

  83. Lemal S, Nguyen N, de Boor J, Ghosez P, Varignon J, Klobes B, Hermann RP, Verstraete MJ (2015) Thermoelectric properties of the unfilled skutterudite \(\text{ FeSb }_3\) from first principles and Seebeck local probes. Phys Rev B 92:205204

    Article  CAS  Google Scholar 

  84. Seo YS, Ahn JS (2013) Pressure dependence of the phonon spectrum in \(\text{ BaTiO }_3\) polytypes studied by ab initio calculations. Phys Rev B 88:014114

    Article  CAS  Google Scholar 

  85. Belokoneva EL, Shcherbakova YK (2003) Electron density in synthetic escolaite \(\text{ Cr }_2\text{ O }_3\) with a corundum structure and its relation to antiferromagnetic properties. Russ J Inorg Chem 48:861–869

    Google Scholar 

  86. Wyckoff RWG (1963) Crystal structures. Wiley, New York

    Google Scholar 

  87. Rice CE, Robinson WR (1977) High-temperature crystal chemistry of \(\text{ Ti }_2\text{ O }_3\): structural changes accompanying the semiconductor-metal transition. Acta Crystallogr B 33:1342–1348

    Article  Google Scholar 

  88. Newnham EE, de Haan YM (1962) Refinement of the \(\alpha \) Al\(_2\)O\(_3\), \(\text{ Ti }_2\text{ O }_3\), \(\text{ V }_2\text{ O }_3\) and \(\text{ Cr }_2\text{ O }_3\) structures. Z Kristallogr New Cryst Struct 117:235–237

    Article  CAS  Google Scholar 

  89. Corà F, Alfredsson M, Mallia G, Middlemiss DS, Mackrodt WC, Dovesi R, Orlando R (2004) The performance of hybrid density functionals in solid state chemistry. Struct Bond 113:171–232

    Article  CAS  Google Scholar 

  90. Maj S (1988) Energy-gap and density in \(\text{ SiO }_2\) polymorphs. Phys Chem Miner 15:271–273

    Article  CAS  Google Scholar 

  91. Stapelbroek M, Evans BD (1978) Exciton structure in UV-absorption edge of tetragonal \(\text{ GeO }_2\). Solid State Commun 25:959–962

    Article  CAS  Google Scholar 

  92. Kurmaev EZ, Wilks RG, Moewes A, Finkelstein LD, Shamin SN, Kuneš J (2008) Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides. Phys Rev B 77:165127

    Article  CAS  Google Scholar 

  93. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  94. Thomas GA, Rapkine DH, Carter SA, Millis AJ, Rosenbaum TF, Metcalf P, Honig JM (1994) Observation of the gap and kinetic energy in a correlated insulator. Phys Rev Lett 73:1529–1532

    Article  CAS  Google Scholar 

  95. Uozumi T, Okada K, Kotani A (1996) Theory of photoemission spectra for \(\text{ M }_2\text{ O }_3\) (M = Ti, V, Cr, Mn, Fe) compounds. J Electron Spectros Relat Phenom 78:103–106

    Article  CAS  Google Scholar 

  96. Perdew JP, Yang W, Burke K, Yanga Z, Gross EKU, Scheffler M, Scuseriaj GE, Henderson TM, Zhang IY, Ruzsinszky A, Peng H, Sun J, Trushin E, Görling A (2017) Understanding band gaps of solids in generalized Kohn–Sham theory. PNAS 114:2801–2806

    Article  CAS  Google Scholar 

  97. Meng Y, Liu XW, Huo CF, Guo WP, Cao DB, Peng Q, Dearden A, Gonze X, Yang Y, Wang J et al (2016) When density functional approximations meet iron oxides. J Chem Theory Comput 12:5132–5144

    Article  CAS  Google Scholar 

  98. Moore EA (2007) First-principles study of the mixed oxide \(\alpha \)-\(\text{ FeCrO }_3\). Phys Rev B 76:195107

    Article  CAS  Google Scholar 

  99. Wilson NC, Russo SP (2009) Hybrid density functional theory study of the high-pressure polymorphs of \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\) hematite. Phys Rev B 79:094113

    Article  CAS  Google Scholar 

  100. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  101. Zicovich-Wilson CM, Hô M, Navarrete-López AM, Casassa S (2016) Hirshfeld-I charges in linear combination of atomic orbitals periodic calculations. Theor Chem Acc 135:1–13

    Article  CAS  Google Scholar 

  102. Sato Y, Akimoto S (1979) Hydrostatic compression of four corundum-type compounds: \(\alpha \)-\(\text{ Al }_2\text{ O }_3\), \(\text{ V }_2\text{ O }_3\), \(\text{ Cr }_2\text{ O }_3\), and \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\). J Appl Phys 50:5285–5291

    Article  CAS  Google Scholar 

  103. Schouwink P, Dubrovinsky L, Glazyrin K, Merlini M, Hanfland M, Pippinger T, Miletich R (2011) High-pressure structural behavior of \(\alpha \)-\(\text{ Fe }_2\text{ O }_3\) studied by single-crystal X-ray diffraction and synchrotron radiation up to 25 GPa. Am Mineral 96:1781–1786

    Article  CAS  Google Scholar 

  104. Sumino Y, Anderson OL (1984) Elastic constants of minerals. In: Carmichael RS (ed) Handbook of physical properties of rocks, vol 3. CRC Press, Boca Raton, pp 39–138

    Google Scholar 

  105. Olsen JS, Cousins CSG, Gerward L, Jhans HT, Sheldon BJ (1991) A study of the crystal structure of \(\text{ Fe }_2\text{ O }_3\) in the pressure range up to 65 GPa using synchrotron radiation. Phys Scr 43:327

    Article  CAS  Google Scholar 

  106. Rozenberg GK, Dubrovinsky LS, Pasternak MP, Naaman O, Le Bihan T, Ahuja R (2002) High-pressure structural studies of hematite \(\text{ Fe }_2\text{ O }_3\). Phys Rev B 65:064112

    Article  CAS  Google Scholar 

  107. Mougin J, Le Bihan T, Lucazeau G (2001) High-pressure study of \(\text{ Cr }_2\text{ O }_3\) obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. J Phys Chem Solids 62:553–563

    Article  CAS  Google Scholar 

  108. Ohnishi S, Mizutani H (1978) Crystal field effect on bulk moduli of transition metal oxides. J Geophys Res Solid Earth 83:1852–1856

    Article  CAS  Google Scholar 

  109. Noguchi Y, Kusaba K, Fukuoka K, Syono Y (1996) Shock-induced phase transition of MnO around 90 GPa. Geophys Res Lett 23:1469–1472

    Article  CAS  Google Scholar 

  110. Makino Y, Miyake S (2000) Estimation of bulk moduli of compounds by empirical relations between bulk modulus and interatomic distance. J Alloys Compd 313:235–241

    Article  CAS  Google Scholar 

  111. Jeanloz R, Rudy A (1987) Static compression of MnO manganosite to 60 GPa. J Geophys Res Solid Earth 92:11433–11436

    Article  CAS  Google Scholar 

  112. Nishio-Hamane D, Katagiri M, Niwa K, Sano-Furukawa A, Okada T, Yagi T (2009) A new high-pressure polymorph of \(\text{ Ti }_2\text{ O }_3\): implication for high-pressure phase transition in sesquioxides. High Press Res 29:379–388

    Article  CAS  Google Scholar 

  113. Ovsyannikov SV, Wu X, Shchennikov VV, Karkin AE, Dubrovinskaia N, Garbarino G, Dubrovinsky L (2010) Structural stability of a golden semiconducting orthorhombic polymorph of \(\text{ Ti }_2\text{ O }_3\) under high pressures and high temperatures. J Phys Condens Matter 22:375402

    Article  CAS  Google Scholar 

  114. McWhan DB, Remeika JP (1970) Metal-insulator transition in (\(\text{ V }_{1-{\rm x}}\text{ Cr }_{\rm x})_2\text{ O }_3\). Phys Rev B 2:3734–3750

    Article  Google Scholar 

  115. Demuth T, Jeanvoine Y, Hafner J, Angyan JG (1999) Polymorphism in silica studied in the local density and generalized-gradient approximations. J Phys Condens Matter 11:3833–3874

    Article  CAS  Google Scholar 

  116. Weidner DJ, Bass JD, Ringwood AE, Sinclair W (1982) The single-crystal elastic-moduli of stishovite. J Geophys Res 87:4740–4746

    Article  Google Scholar 

  117. Panero WR, Benedetti LR, Jeanloz R (2003) Equation of state of stishovite and interpretation of \(\text{ SiO }_2\) shock-compression data. J Geophys Res Solid Earth 108:ECV5-1

    Article  CAS  Google Scholar 

  118. Christie DM, Chelikowsky JR (2000) Electronic and structural properties of germania polymorphs. Phys Rev B 62:14703–14711

    Article  CAS  Google Scholar 

  119. Wang H, Simmons G (1973) Elasticity of some mantle crystal-structures: 2. Rutile \(\text{ GeO }_2\). J Geophys Res 78:1262–1273

    Article  CAS  Google Scholar 

  120. Liebermann RC (1973) Elastic properties of polycrystalline \(\text{ SnO }_2\) and \(\text{ GeO }_2\): comparison with stishovite and rutile data. Phys Earth Planet Inter 7:461–465

    Article  CAS  Google Scholar 

  121. Haines J, Léger JM (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Phys Rev B 55:11144–11154

    Article  CAS  Google Scholar 

  122. Chang E, Graham EK (1975) Elastic-constants of cassiterite \(\text{ SnO }_2\) and their pressure and temperature-dependence. J Geophys Res 80:2595–2599

    Article  CAS  Google Scholar 

  123. Rohrbach A, Hafner J, Kresse G (2004) Ab initio study of the (0001) surfaces of hematite and chromia: influence of strong electronic correlations. Phys Rev B 70:125426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of our friend Claudio M. Zicovich-Wilson, who opened a new perspective of the solid state chemistry in México. We really miss him for his compromise with the academy and with his friends. We thank the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa for access to their computer facilities. We also thank CONACYT, México, for financial support throughout project 154784 and the Red Temática de Fisicoquímica Teórica. M. Rivera-Almazo thanks CONACYT for the scholarship 633579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubicelia Vargas.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete-López, A.M., Rivera-Almazo, M., Garza, J. et al. Importance of one-parameter hybrid exchange-correlation functionals in band gaps of transition metal and metalloid oxides. Theor Chem Acc 137, 36 (2018). https://doi.org/10.1007/s00214-018-2222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2222-3

Keywords

Navigation