Skip to main content
Log in

Fuzzy atoms in molecules from Bregman divergences

  • Letter
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We define the densities of atoms in molecules so that their Bregman divergence from reference proatom densities is minimized. This generalizes the information-theoretic approach to atoms in molecules and under reasonable assumptions, results in a formulation that resembles the Hirshfeld partitioning. In general, Bregman partitionings are intrinsically nonlocal, and this means that this formulation, while mathematically elegant, is computationally unwieldy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is more than is required, mathematically. The following analysis will hold for any twice-integrable function.

References

  1. Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys 113:10886–10898

    Article  CAS  Google Scholar 

  2. Fias S, Heidar-Zadeh F, Ayers PW, Parr RG (2017) A reference-free stockholder partitioning method based on the force on electrons (submitted)

  3. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97:8879–8882

    Article  CAS  Google Scholar 

  4. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105:7391–7400

    Article  CAS  Google Scholar 

  5. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  6. Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc 115:370–378

    Article  CAS  Google Scholar 

  7. Heidar-Zadeh F, Ayers PW, Vöhringer-Martinez E (2017) Constrained iterative Hirshfeld charges: a variational approch (submitted)

  8. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  9. Verstraelen T, Vandenbrande S, Heidar-Zadeh F, Vanduyfhuys L, Van Speybroeck V, Waroquier M, Ayers PW (2016) Minimal basis iterative stockholder: atoms in molecules for force-field development. J Chem Theory Comput 12:3894–3912

    Article  CAS  Google Scholar 

  10. Bultinck P, Ayers PW, Fias S, Tiels K, Van Alsenoy C (2007) Uniqueness and basis set dependence of iterative Hirshfeld charges. Chem Phys Lett 444:205–208

    Article  CAS  Google Scholar 

  11. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J Chem Theory Comput 9:2221–2225

    Article  CAS  Google Scholar 

  12. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2014) Extended Hirshfeld: atomic charges that combine accurate electrostatics with transferability. Abstr Pap Am Chem Soc 247:1

    Google Scholar 

  13. Ghillemijn D, Bultinck P, Van Neck D, Ayers PW (2011) A self-consistent Hirshfeld method for the atom in the molecule based on minimization of information loss. J Comput Chem 32:1561–1567

    Article  CAS  Google Scholar 

  14. Manz TA, Sholl DS (2010) Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J Chem Theory Comput 6:2455–2468

    Article  CAS  Google Scholar 

  15. Manz TA, Sholl DS (2012) Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J Chem Theory Comput 8:2844–2867

    Article  CAS  Google Scholar 

  16. Lillestolen TC, Wheatley RJ (2009) Atomic charge densities generated using an iterative stockholder procedure. J Chem Phys 131:144101

    Article  Google Scholar 

  17. Lillestolen TC, Wheatley RJ (2008) Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chem Commun 45:5909–5911

    Article  Google Scholar 

  18. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2012) The conformational sensitivity of iterative stockholder partitioning schemes. Chem Phys Lett 545:138–143

    Article  CAS  Google Scholar 

  19. Heidar-Zadeh F, Ayers PW (2015) How pervasive is the Hirshfeld partitioning? J Chem Phys 142:044107

    Article  Google Scholar 

  20. Heidar-Zadeh F, Ayers PW, Bultinck P (2014) Deriving the Hirshfeld partitioning using distance metrics. J Chem Phys 141:094103

    Article  Google Scholar 

  21. Heidar-Zadeh F, Vinogradov I, Ayers PW (2017) Hirshfeld partitioning from non-extensive entropies. Theor Chem Acc 136:54

    Article  Google Scholar 

  22. Nielsen F, Nock R (2011) On the Reyni and Tsallis entropies and divergences for exponential families, arxiv

  23. Zhang J (2004) Divergence function, duality, and convex analysis. Neural Comput 16:159–195

    Article  Google Scholar 

  24. Fujisawa H, Eguchi S (2008) Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis 99:2053–2081

    Article  Google Scholar 

  25. Cichocki A, Amari S (2010) Families of alpha-beta-and gamma-divergences: flexible and robust measures of similarities. Entropy 12:1532–1568

    Article  Google Scholar 

  26. Nielsen F, Nock R (2009) Sided and symmetrized Bregman centroids. IEEE Trans Inf Theory 55:2882–2904

    Article  Google Scholar 

  27. Boissonnat JD, Nielsen F, Nock R (2010) Bregman Voronoi Diagrams. Discret Comput Geom 44:281–307

    Article  Google Scholar 

  28. Heidar-Zadeh F, Ayers PW, Bultinck P, Verstraelen T (in preparation)

  29. Zhu HY, Rohwer R (1995) Bayesian invariant measurements of generalization. Neural Process Lett 2:28–31

    Article  Google Scholar 

  30. Skilling J (1989) Classic maximum entropy. In: Skilling J (ed) Maximum entropy and Bayesian methods. Springer, Cambridge, pp 45–52

    Chapter  Google Scholar 

  31. Skilling J (1988) The axioms of maximum entropy. In: Erickson GJ, Smith CR (eds) Maximum entropy and Bayesian methods in science and engineering. I. Foundations, Springer, Cambridge, pp 173–187

    Chapter  Google Scholar 

  32. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  33. van Leeuwen R, Baerends EJ (1995) Energy expressions in density-functional theory using line integrals. Phys Rev A 51:170–178

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank NSERC and Compute Canada for funding. FHZ acknowledge support from Vanier-CGS fellowship and Ghent University Scholarship for a Joint Doctorate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farnaz Heidar-Zadeh or Paul W. Ayers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidar-Zadeh, F., Ayers, P.W. Fuzzy atoms in molecules from Bregman divergences. Theor Chem Acc 136, 92 (2017). https://doi.org/10.1007/s00214-017-2114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2114-y

Keywords

Navigation