Skip to main content
Log in

A partition function for atoms and bonds in molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new weight function is proposed to work with the atoms and bonds in molecules theory. The molecular radial electron density (\(\rho _{\mathrm{rad}}{({\mathbf {r}} )}\)) and bond electron density (\(\rho ^{A-B}{({\mathbf {r}} )}\)) are visually illustrated using the proposed weight. The molecular properties including the total number of electrons, the electron–nuclear potential energy, and Coulomb potential energy are calculated numerically using the proposed weight. The computed molecular properties using the proposed weight are compared to those obtained using the Becke weight and as well with molecular properties calculated analytically. Our findings show that the proposed weight gives better bonding-region representations for both \(\rho _{\mathrm{rad}}{({\mathbf {r}} )}\) and \(\rho ^{A-B}{({\mathbf {r}} )}\) than those obtained using the Becke weight. In addition, the proposed weight performs equally well or better than the Becke weight at numerical integration of molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. RHF for closed shell and ROHF for open shell.

References

  1. Mayer I (2013) Relation between the Hilbert space and “fuzzy atoms” analyses. Chem. Phys. Lett. 585:198–200

    Article  CAS  Google Scholar 

  2. Mulliken RS (1935) Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J. Chem. Phys. 3:573–585

    Article  CAS  Google Scholar 

  3. Löwdin PO (1953) Approximate formulas for many center integrals in the theory of molecules and crystals. J. Chem. Phys. 21:374–375

    Article  Google Scholar 

  4. Clark AE, Davidson ER (2003) Population analyses that utilize projection operators. Int. J. Quantum Chem. 93:384–394

    Article  CAS  Google Scholar 

  5. Salvador P, Ramos-Cordoba E (2013) Communication: an approximation to Bader’s topological atom. J. Chem. Phys. 139:071103

    Article  Google Scholar 

  6. Awad IE, Poirier RA (2019) Atoms and bonds in molecules: molecular radial energy densities. Comput. Theor. Chem. 1153:44–53

    Article  CAS  Google Scholar 

  7. Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1:1096–1109

    Article  CAS  Google Scholar 

  8. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J. Phys. Chem. A 103:304–314

    Article  CAS  Google Scholar 

  9. Bader RFW, Nguyen-Dang T-T, Tal Y (1981) A topological theory of molecular structure. Rep. Prog. Phys. 44:893

    Article  Google Scholar 

  10. Bader RFW (1994) Atoms in Molecules: A Quantum Theory. Wiley, Chichester

    Google Scholar 

  11. Bader RFW (2005) Monatshefte fur Chemie 136:819–854

    Article  CAS  Google Scholar 

  12. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44:129–138

    Article  CAS  Google Scholar 

  13. Bultinck P, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the hirshfeld atoms in molecules. J. Chem. Phys. 126:144111

    Article  Google Scholar 

  14. Manz TA, Sholl DS (2010) Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J. Chem. Theory Comput. 6:2455–2468 PMID: 26613499

    Article  CAS  Google Scholar 

  15. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J. Chem. Theory Comput. 9:2221–2225 PMID: 26583716

    Article  CAS  Google Scholar 

  16. Manz TA, Sholl DS (2012) Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J. Chem. Theory Comput. 8:2844–2867 PMID: 26592125

    Article  CAS  Google Scholar 

  17. Vanpoucke DEP, Bultinck P, Van Driessche I (2013) Extending Hirshfeld-I to bulk and periodic materials. J. Comput. Chem. 34:405–417

    Article  CAS  Google Scholar 

  18. Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88:2547–2553

    Article  CAS  Google Scholar 

  19. Besaw JE, Warburton PL, Poirier RA (2015) Atoms and bonds in molecules: topology and properties. Theor. Chem. Acc. 134:1–15

    Article  CAS  Google Scholar 

  20. Warburton PL, Poirier RA, Nippard D (2011) Atoms and bonds in molecules from radial densities. J. Phys. Chem. A 115:852–867 PMID: 21189033

    Article  CAS  Google Scholar 

  21. Poirier RA, Awad IE, Hollett JW, Warburton PL MUNgauss, Memorial University, Chemistry Department, St. John’s, NL, A1B 3X7. With contributions from Alrawashdeh A, Becker JP, Besaw J, Bungay SD, Colonna F, El-Sherbiny A, Gosse T, Keefe D, Kelly A, Nippard D, Pye CC, Reid D, Saputantri K, Shaw M, Staveley M, Stueker O, Wang Y, and Xidos J

  22. Gill PMW, Johnson BG, Pople JA (1993) A standard grid for density functional calculations. Chem. Phys. Lett. 209:506–512

    Article  CAS  Google Scholar 

  23. Wolfram Research, Inc., (2007) Mathematica 11.2. https://www.wolfram.com

  24. El-Sherbiny A, Poirier RA (2009) Comprehensive study of some well-known molecular numerical integration methods. Can. J. Chem. 87:1313–1321

    Article  CAS  Google Scholar 

  25. Gill PMW, Chien S-H (2003) Radial quadrature for multiexponential integrands. J. Comput. Chem. 24:732–740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Atlantic Excellence Network (ACENET) and Compute Canada for the computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ibrahim E. Awad or Raymond A. Poirier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13073 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, I.E., Poirier, R.A. A partition function for atoms and bonds in molecules. Theor Chem Acc 138, 82 (2019). https://doi.org/10.1007/s00214-019-2468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2468-4

Keywords

Navigation