The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds

  • Ruslán Álvarez-Diduk
  • Annia GalanoEmail author
  • Dun Xian Tan
  • Russel J. Reiter
Regular Article
Part of the following topical collections:
  1. CHITEL 2015 - Torino - Italy


The role of the acid–base equilibria and the sequential proton loss electron transfer mechanism (SPLET) on the free radical scavenging activity of six melatonin-related compounds was investigated using the density functional theory. It was found that this chemical route is particularly important for about half of the studied compounds. Some of their pKa values are reported here for the first time. In addition, our results also indicate that anionic species, presenting the phenolate moiety, may be crucial to scavenge peroxyl radicals albeit their populations are relatively low at physiological pH. The key number to consider in this context should be the product of the molar fraction of the reacting compound, at the pH of interest, by the corresponding rate constant.


pKa Reaction mechanisms Kinetics Antioxidant activity SPLET DFT 



We gratefully acknowledge the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa for computing time. This work was partially supported by project SEP-CONACyT 167491. R. A.-D. acknowledges the economic support provided by the same project during his postdoctoral scholarship.

Supplementary material

214_2015_1785_MOESM1_ESM.pdf (83 kb)
Supplementary material 1 (PDF 83 kb)


  1. 1.
    Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Crit Rev Biochem Mol Biol 44:175CrossRefGoogle Scholar
  2. 2.
    Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E (2012) J Matern Fetal Neonatal Med 25:207CrossRefGoogle Scholar
  3. 3.
    Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. (2015) J Pineal Res 59:403–419Google Scholar
  4. 4.
    Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Biol Signals Recept 9:137CrossRefGoogle Scholar
  5. 5.
    Reiter RJ, Tan DX, Galano A (2014) Physiology 29:325CrossRefGoogle Scholar
  6. 6.
    Zhang HM, Zhang Y (2014) J Pineal Res 57:131CrossRefGoogle Scholar
  7. 7.
    Alvarez-Diduk R, Galano A, Tan DX, Reiter RJ (2015) J Phys Chem B 119:8535CrossRefGoogle Scholar
  8. 8.
    Litwinienko G, Ingold KU (2003) J Org Chem 68:3433CrossRefGoogle Scholar
  9. 9.
    Litwinienko G, Ingold KU (2004) J Org Chem 69:5888CrossRefGoogle Scholar
  10. 10.
    Litwinienko G, Ingold KU (2005) J Org Chem 70:8982CrossRefGoogle Scholar
  11. 11.
    Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222CrossRefGoogle Scholar
  12. 12.
    Foti MC (2007) J Pharm Pharmacol 59:1673CrossRefGoogle Scholar
  13. 13.
    Medina ME, Galano A, Alvarez-Idaboy JR (2014) Phys Chem Chem Phys 16:1197CrossRefGoogle Scholar
  14. 14.
    Cordova-Gomez M, Galano A, Alvarez-Idaboy JR (2013) RSC Adv 3:20209CrossRefGoogle Scholar
  15. 15.
    Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 77:3868CrossRefGoogle Scholar
  16. 16.
    Benayahoum A, Amira-Guebailia H, Houache O (2014) Comput Theor Chem 1037:1CrossRefGoogle Scholar
  17. 17.
    Marković Z, Crossed D, Signorović J, Dimitrić Marković JM, Živić M, Amić D (2014) Monatsh Chem 145:953CrossRefGoogle Scholar
  18. 18.
    Pérez-González A, Galano A, Alvarez-Idaboy JR (2014) New J Chem 38:2639CrossRefGoogle Scholar
  19. 19.
    Martínez A, Hernández-Marin E, Galano A (2012) Food Funct 3:442CrossRefGoogle Scholar
  20. 20.
    Xue Y, Zhang L, Li Y, Yu D, Zheng Y, An L et al (2013) J Phys Org Chem 26:240CrossRefGoogle Scholar
  21. 21.
    Mendoza-Wilson AM, Castro-Arredondo SI, Balandrán-Quintana RR (2014) Food Chem 161:155CrossRefGoogle Scholar
  22. 22.
    Dimitrić Marković JM, Milenković D, Amić D, Popović-Bijelić A, Mojović M, Pašti IA et al (2014) Struct Chem 25:1795CrossRefGoogle Scholar
  23. 23.
    Dorović J, Marković JMD, Stepanić V, Begović N, Amić D, Marković Z (2014) J Mol Model 20:Art Id 2345Google Scholar
  24. 24.
    Lengyel J, Rimarčík J, Vagánek A, Klein E (2013) PCCP 15:10895CrossRefGoogle Scholar
  25. 25.
    Medina ME, Iuga C, Álvarez-Idaboy JR (2014) RSC Adv 4:52920CrossRefGoogle Scholar
  26. 26.
    Caicedo C, Iuga C, Castañeda-Arriaga R, Alvarez-Idaboy JR (2014) RSC Adv 4:38918CrossRefGoogle Scholar
  27. 27.
    Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173CrossRefGoogle Scholar
  28. 28.
    Foti MC, Daquino C, Mackie ID, DiLabio GA, Ingold KU (2008) J Org Chem 73:9270CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  30. 30.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378CrossRefGoogle Scholar
  31. 31.
    Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J et al (2009) J Phys Org Chem 22:971CrossRefGoogle Scholar
  32. 32.
    Black G, Simmie JM (2010) J Comput Chem 31:1236Google Scholar
  33. 33.
    Furuncuoǧlu T, Uǧur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Eyring H (1935) J Chem Phys 3:63CrossRefGoogle Scholar
  37. 37.
    Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875CrossRefGoogle Scholar
  38. 38.
    Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771CrossRefGoogle Scholar
  39. 39.
    Marcus RA (1993) Rev Modern Phys 65:599CrossRefGoogle Scholar
  40. 40.
    Marcus RA (1997) Pure Appl Chem 69:13CrossRefGoogle Scholar
  41. 41.
    Collins FC, Kimball GE (1949) J Colloid Sci 4:425CrossRefGoogle Scholar
  42. 42.
    Smoluchowski M (1917) Z Phys Chem 92:129–168Google Scholar
  43. 43.
    Einstein A (1905) Ann Phys 17:549CrossRefGoogle Scholar
  44. 44.
    Stokes GG (1903) Mathematical and physical papers. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Galano A, Alvarez-Idaboy JR (2013) J Comput Chem 34:2430CrossRefGoogle Scholar
  46. 46.
    Ho J, Coote ML (2010) Theor Chem Acc 125:3CrossRefGoogle Scholar
  47. 47.
    Mahal HS, Sharma HS, Mukherjee T (1999) Free Radic Biol Med 26:557CrossRefGoogle Scholar
  48. 48.
    Weber OA, Simeon V (1971) J Inorg Nucl Chem 33:2097CrossRefGoogle Scholar
  49. 49.
    Rudnick G, Kirk KL, Fishkes H, Schuldiner S (1989) J Biol Chem 264:14865Google Scholar
  50. 50.
    Chattopadhyay A, Rukmini R, Mukherjee S (1996) Biophys J 71:1952CrossRefGoogle Scholar
  51. 51.
    Corona-Avendao S, Romero-Romo MA, Rojas-Hernández A, Ramírez-Silva MT (2005) Spectrochim Acta Pt A Mol Spectrosc 61:621CrossRefGoogle Scholar
  52. 52.
    Galano A, Tan DX, Reiter RJ (2013) J Pineal Res 54:245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ruslán Álvarez-Diduk
    • 1
  • Annia Galano
    • 1
    Email author
  • Dun Xian Tan
    • 2
  • Russel J. Reiter
    • 2
  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  2. 2.Department of Cellular and Structural BiologyUT Health Science CenterSan AntonioUSA

Personalised recommendations