Skip to main content
Log in

Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this article, the antoxidative mechanisms HAT, SPLET, and SET-PT of the ortho-, meta-, and para-hydroxybenzoic acids and corresponding carboxylate anions with different radicals (·OO, ·OH, ·OOH, and CH3OO·) were investigated. For this reason, the ΔH BDE, ΔH IP, and ΔH PA values of the corresponding reactions in different solvents (water, DMSO, pentylethanoate, and benzene) were examined. For this purpose, the M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) theoretical models were applied. Although the B3LYP-D2 method produced lower reaction enthalpy values, both theoretical models exhibited the same trend. It was found that SET-PT is not a favorable reaction path for any hydroxybenzoic acids and their anions with any radicals in any solvents. No anion reacts with −·O2, whereas meta- and para-hydroxybenzoic acids react with −·O2 only in nonpolar solvents. In all other cases, the HAT and SPLET mechanisms are competitive. Which of them is dominant depends on the properties of the acids, anions, radicals, and solvents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amarowicz R, Fornal J, Karamać M (1995) Grasas Aceites 46:354

    Article  CAS  Google Scholar 

  2. Naczk M, Amarowicz R, Sullivan A, Shahidi F (1998) Food Chem 62:489

    Article  CAS  Google Scholar 

  3. Shahidi F, Wanasundara UN, Amarowicz R (1994) Food Res Int 27:489

    Article  CAS  Google Scholar 

  4. Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC Press, Boca Raton

    Google Scholar 

  5. Weidner S, Amarowicz R, Karamać M, Dabrowski G (1999) Eur Food Res Technol 210:109

    Article  CAS  Google Scholar 

  6. Weidner S, Amarowicz R, Karamać M, Fraczek E (2000) Plant Physiol Biochem 38:595

    Article  CAS  Google Scholar 

  7. Sosulski F, Krygier K, Hogge L (1982) J Agric Food Chem 30:337

    Article  CAS  Google Scholar 

  8. Herrmann K, Nagel CW (1989) Crit Rev Food Sci Nutr 28:315

    Article  CAS  Google Scholar 

  9. Kim D-O, Lee CY (2004) Crit Rev Food Sci Nutr 44:253

    Article  CAS  Google Scholar 

  10. Tanrioven D, Eksi A (2005) Food Chem 93:89

    Article  Google Scholar 

  11. Sllbratte MA, Neergheen VS, Luximon-Ramma A, Aruona OI, Bahorum T (2005) Mutat Res 579:200

    Article  Google Scholar 

  12. Matthews C, Davidson J, Bauer E, Morrison JL, Richardson AP (1956) J Am Pharm Assoc (Baltim) 45:260

    Article  CAS  Google Scholar 

  13. Soni MG, Carabin IG, Burdock GA (2005) Food Chem Toxicol 43:985

    Article  CAS  Google Scholar 

  14. Zhang J-D, Zhu Q-Z, Li S-J, Tao F-M (2009) Chem Phys Lett 475:15

    Article  CAS  Google Scholar 

  15. Cuvelier M-E, Richard H, Berset C (1992) Biosci Biotech Biochem 56:324

    Article  CAS  Google Scholar 

  16. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  17. Klein E, Lukeš V, Ilčin M (2007) Chem Phys 336:51

    Article  CAS  Google Scholar 

  18. Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222

    Article  CAS  Google Scholar 

  19. Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux J-L, Olivier Y, Trouillas P (2013) J Phys Chem A 117:2082

    Article  Google Scholar 

  20. Košinova P, Di Meo F, El Anouar H, Duroux J-L, Trouillas P (2011) Int J Quantum Chem 111:1131

    Article  Google Scholar 

  21. Yang YL, Dyakov Y, Lee YT, Ni C-K, Sun Y-L, Hu W-P (2011) J Chem Phys 134:034314

    Article  Google Scholar 

  22. Yahagi T, Fujii A, Ebata T, Mikami N (2001) J Phys Chem A 105:10673

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick AD, Rabuck KD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A.1-SMP. Gaussian Inc, Wallingford

    Google Scholar 

  24. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  25. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  27. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  28. Alberto ME, Russo N, Grand A, Galano A (2013) Phys Chem Chem Phys 15:4642

    Article  CAS  Google Scholar 

  29. Black G, Simmie JM (2010) J Comput Chem 31:1236

    CAS  Google Scholar 

  30. Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114

    Article  CAS  Google Scholar 

  31. Galano A, Macias-Ruvalcaba NA, Medina-Campos ON, Pedraza-Chaverri J (2010) J Phys Chem B 114:6625

    Article  CAS  Google Scholar 

  32. Marković ZS, Dimitrić Marković JM, Doličanin ĆB (2010) Theor Chem Acc 127:69

    Article  Google Scholar 

  33. Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012) Food Chem 135:2070

    Article  Google Scholar 

  34. Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113:13913

    Article  CAS  Google Scholar 

  35. Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012) Food Chem 134:1754

  36. Grimme S (2011) WIREs Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  37. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  38. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  39. Bayach I, Sancho-García JC, Di Meo F, Weber J-FF, Trouillas P (2013) Chem Phys Lett 578:120

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  41. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  43. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  44. Carpenter JE, Weinhold F (1988) J Mol Struc (Theochem) 169:41

    Article  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Science of the Republic of Serbia (project Nos. 172015 and 174028) and the Ministry of Science, Education, and Sports of the Republic of Croatia (project Nos. 079-0000000-3211 and 098-0982464-2511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Marković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marković, Z., Đorović, J., Dimitrić Marković, J.M. et al. Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatsh Chem 145, 953–962 (2014). https://doi.org/10.1007/s00706-014-1163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1163-3

Keywords

Navigation