Skip to main content
Log in

Spin contamination and noncollinearity in general complex Hartree–Fock wave functions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An expression for the square of the spin operator expectation value, \(\langle S^2 \rangle\), is obtained for a general complex Hartree–Fock wave function and decomposed into four contributions: the main one whose expression is formally identical to the restricted (open-shell) Hartree–Fock expression. A spin contamination one formally analogous to that found for spin unrestricted Hartree–Fock wave functions. A noncollinearity contribution related to the fact that the wave function is not an eigenfunction of the spin-S z operator. A perpendicularity contribution related to the fact that the spin density is not constrained to be zero in the xy-plane. All these contributions are evaluated and compared for the H2O+ system. The optimization of the collinearity axis is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartree DR (1928) Proc Camb Philos Soc 24:89

    Article  CAS  Google Scholar 

  2. Slater JC (1929) Phys Rev 34:1293

    Article  CAS  Google Scholar 

  3. Fock V (1930) Physik 61:126

    Article  Google Scholar 

  4. Berthier G (1964) In: Löwdin PO, Pullman B (eds) Molecular orbitals in chemistry, physics and biology. Academic Press, New York, p 57

    Google Scholar 

  5. Cassam-Chenaï P (1992) Algèbre fermionique et chimie quantique, Ph.D thesis, Université de Paris 6

  6. Cassam-Chenaï P, Chandler GS (1992) Sur les fonctions de Hartree–Fock sans contrainte. Comptes-rendus de l’académie des sciences série II 314:755–757

    Google Scholar 

  7. Cassam-Chenaï P, Chandler GS (1993) Int J Quantum Chem 46:593–607

    Article  Google Scholar 

  8. Amos AT, Hall GG (1961) Proc R Soc A 263:483

    Article  Google Scholar 

  9. Löwdin PO (1962) J Appl Phys 33:251

    Article  Google Scholar 

  10. Cassam-Chenaï P (1994) J Math Chem 15:303

    Article  Google Scholar 

  11. Roothaan CCJ (1960) Rev Mod Phys 32:179

    Article  Google Scholar 

  12. Andrews JS, Jayatilaka D, Bone RGA, Handy NC, Amos RD (1991) Chem Phys Lett 183:423

    Article  CAS  Google Scholar 

  13. Brändas E (1968) J Mol Spectrosc 27:236

    Article  Google Scholar 

  14. Berthier G (1954) Comptes-Rendus de l’Acadmie des Sciences 238:91–93

    CAS  Google Scholar 

  15. Pople JA, Nesbet RK (1954) J Chem Phys 22:571

    Article  CAS  Google Scholar 

  16. Bunge C (1967) Phys Rev 154:70

    Article  CAS  Google Scholar 

  17. Lefebvre R, Smyers YG (1967) Int J Quantum Chem 1:403

    Article  CAS  Google Scholar 

  18. Lunell S (1972) Chem Phys Lett 13:93

    Article  CAS  Google Scholar 

  19. Löwdin PO (1955) Phys Rev 97:509

    Google Scholar 

  20. Hendeković J (1974) Int J Quantum Chem 8:799

    Article  Google Scholar 

  21. Prat RE, Lefebvre R (1969) Int J Quantum Chem 3:503

    Article  CAS  Google Scholar 

  22. Penney R (1968) Am J Phys 36:871

    Article  Google Scholar 

  23. Jordan P, Neumann JV, Wigner E (1934) Ann Math 35:29–64

    Article  Google Scholar 

  24. Solèr MP (1995) Commun Algebra 23:219

    Article  Google Scholar 

  25. Holland SS (1995) Bull Am Math Soc 32:205

    Article  Google Scholar 

  26. Mayer I, Löwdin PO (1993) Chem Phys Lett 202:1

    Article  CAS  Google Scholar 

  27. Cassam-Chenaï P (2002) J Chem Phys 116:8677–8690

    Article  Google Scholar 

  28. Cassam-Chenaï P, Jayatilaka D (2012) Chem Phys 137:064107 (And supplementary material)

    Google Scholar 

  29. Coey JMD (1987) Revue canadienne de physique 65:1210

    Article  CAS  Google Scholar 

  30. Libby E, McCusker JK, Schmitt EA, Folting K, Hendrickson DN, Christou G (1991) Inorg Chem 30:3486

    Article  CAS  Google Scholar 

  31. Jayatilaka D (1998) J Chem Phys 108:7587

    Article  CAS  Google Scholar 

  32. Small DW, Sundstrom EJ, Head-Gordon M (2015) J Chem Phys 142:094112

    Article  Google Scholar 

  33. Jayatilaka D, Grimwood DJ (2003) In: Sloot P, Abramson D, Bogdanov A, Gorbachev Y, Dongarra J, Zomaya A (eds) Computational Science–ICCS 2003. Lectures notes in computer sciences, vol 2660. Springer, Berlin, pp 142–151

    Google Scholar 

  34. Bučinský L, Malček M, Biskupič S, Jayatilaka D, Vl Büchel GE, Arion B (2015) Comput Theor Chem 1065:27

    Article  Google Scholar 

  35. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  36. Barysz M, Sadlej AJ (2001) J Mol Struct (THEOCHEM) 573:181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Lukáš Bučinský for drawing our attention to the problem of the derivation of GCHF spin contamination, and to the fact that S 2 does not commutes with the “spin-same-orbit” coupling term, usually used in quantum chemistry. The referees and the editor are acknowledged for suggesting many improvements to the manuscript. This article is a tribute to Prof. P. Surjàn and is also dedicated to the memory of the late Prof. Gaston Berthier, who introduced to the author in the course of vivid discussions, many of the references listed below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cassam-Chenaï.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassam-Chenaï, P. Spin contamination and noncollinearity in general complex Hartree–Fock wave functions. Theor Chem Acc 134, 125 (2015). https://doi.org/10.1007/s00214-015-1731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1731-6

Keywords

Navigation