Skip to main content
Log in

Orthogonal operators: extension to hyperfine structure and equivalent p- and f-electrons

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Orthogonal operators are a next step in the semi-empirical description of complex spectra. Orthogonality yields optimal independence and thus least correlation between the operators. The increased stability of the fitting process is used to include higher-order many-body as well as fully relativistic effects. The calculated eigenvalues are frequently an order of magnitude more accurate with respect to a conventional semi-empirical approach. The resulting eigenvectors may not only be put to use to calculate transition probabilities and g-factors, but also to calculate hyperfine structure A and B constants. We illustrate our first steps in this field with two examples of first spectra of the iron group elements. The results are compared to current experimental hyperfine structure A-values while strong and weak points of the method are discussed. In particular to be able to deal with lanthanides and actinides, the orthogonal operator method is completed with the definition of operators for equivalent p- and f-electrons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. Data analyzed and presented in this article are available from the corresponding author upon reasonable request.

References

  1. G. Başar, F. Güzelçimen, I. Öztürk et al., Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 202, 193–199 (2017). https://doi.org/10.1016/j.jqsrt.2017.07.035

    Article  ADS  Google Scholar 

  2. G. Başar, I.K. Öztürk, H. Erdoǧan et al., New even parity fine structure energy levels of atomic vanadium. Spectrochim. Acta Part B: Atom. Spect. 207(106737), 1–8 (2023). https://doi.org/10.1016/j.sab.2023.106737

    Article  Google Scholar 

  3. H. Casimir, Über die hyperfeinstruktur des Europiums. Physica 2, 719–723 (1935). https://doi.org/10.1016/S0031-8914(35)90148-3

    Article  ADS  Google Scholar 

  4. J. Childs, O. Poulsen, L.S. Goodman et al., Laser-RF double resonance studies of the hyperfine structure of \(^{51}\)V. Phys. Rev. A 19, 168–179 (1979). https://doi.org/10.1103/PhysRevA.19.168

    Article  ADS  Google Scholar 

  5. R. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981)

    Book  Google Scholar 

  6. H. Crosswhite, H. Crosswhite, B. Judd, Magnetic parameters for the configuration \(f^3\). Phys. Rev. 174, 89–94 (1968). https://doi.org/10.1103/PhysRev.174.89

    Article  ADS  Google Scholar 

  7. M. Ding, J. Pickering, Comment on: ‘Hyperfine structure measurements of Co I and Co II with Fourier transform spectroscopy’. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 288(108240), 1–4 (2022). https://doi.org/10.1016/j.jqsrt.2022.108240

    Article  Google Scholar 

  8. H. Dothe, J. Hansen, B. Judd et al., Orthogonal scalar operators for p\(^N\)d and pd\(^N\). J. Phys. B: Atom. Mol. Phys. 18, 1061–1080 (1985). https://doi.org/10.1088/0022-3700/18/6/007

    Article  ADS  Google Scholar 

  9. M. Elantkowska, J. Ruczkowski, Dembczyński, Construction of the energy matrix for complex atoms Part VI: core polarization effects. Eur. Phys. J. Plus 131(429), 1–15 (2016). https://doi.org/10.1140/epjp/i2016-16429-3

    Article  Google Scholar 

  10. H. Fu, Y. Xu, D. Fang et al., Hyperfine structure measurements of Co I and Co II with Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 266(107590), 1–7 (2021). https://doi.org/10.1016/j.jqsrt.2021.107590

    Article  Google Scholar 

  11. P. Głowacki, D. Stefańska, J. Ruczkowski et al., Hyperfine structure investigations of Mn I. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 287(108245), 1–16 (2022). https://doi.org/10.1016/j.jqsrt.2022.108245

    Article  Google Scholar 

  12. M. Godefroid, Note on the mutual spin-orbit matrix elements J. Phys. B: Atom. Mol. Phys. 15, 3583–3586 (1982). https://doi.org/10.1088/0022-3700/15/20/008

    Article  ADS  Google Scholar 

  13. F. Güzelçimen, A. Er, I. Öztürk et al., Investigation of the hyperfine structure of weak atomic Vanadium lines by means of Fourier transform spectroscopy. J. Phys. B: Atom. Mol. Opt. Phys. 48(115005), 1–7 (2015). https://doi.org/10.1088/0953-4075/48/11/115005

    Article  Google Scholar 

  14. J. Hansen, B. Judd, Fine-structure analyses with orthogonal operators. J. Phys. B: Atom. Mol. Phys. 18, 2327–2338 (1985). https://doi.org/10.1088/0022-3700/18/12/012

    Article  ADS  Google Scholar 

  15. J. Hansen, B. Judd, G. Lister, Parametric fitting to 2p\(^N\)3d configurations using orthogonal operators. J. Phys. B: Atom. Mol. Phys. 20, 5291–5324 (1987). https://doi.org/10.1088/0022-3700/20/20/009

    Article  ADS  Google Scholar 

  16. B. Judd, Three-particle operators for equivalent electrons. Phys. Rev. 141, 4–14 (1966). https://doi.org/10.1103/PhysRev.141.4

    Article  ADS  Google Scholar 

  17. B. Judd, H. Crosswhite, Orthogonalized operators for the f shell. J. Opt. Soc. Am. B 1, 255–260 (1984). https://doi.org/10.1364/JOSAB.1.000255

    Article  ADS  Google Scholar 

  18. B. Judd, M. Suskin, Complete set of orthogonal scalar operators for the configuration f\(^3\). J. Opt. Soc. Am. B 1, 261–265 (1984). https://doi.org/10.1364/JOSAB.1.000261

    Article  ADS  Google Scholar 

  19. B. Judd, H. Wadzinski, A class of null spectroscopic coefficients. J. Math. Phys. 8, 2125–2130 (1967). https://doi.org/10.1063/1.1705129

    Article  ADS  Google Scholar 

  20. B. Judd, H. Crosswhite, H. Crosswhite, Intra-atomic magnetic interactions for \(f\) electrons. Phys. Rev. 169, 130–138 (1968). https://doi.org/10.1103/PhysRev.169.130

    Article  ADS  Google Scholar 

  21. B. Judd, J. Hansen, A. Raassen, Parametric fits in the atomic d shell. J. Phys. B Atom. Mol. Phys. 15, 1457–1472 (1982). https://doi.org/10.1088/0022-3700/15/10/007

    Article  ADS  Google Scholar 

  22. P. Klinkenberg, P. Uylings, The 5f\(^2\)-Configuration in Doubly Ionized Thorium, Th III. Phys. Scr. 34, 413–422 (1986). https://doi.org/10.1088/0031-8949/34/5/010

    Article  ADS  Google Scholar 

  23. A. Kramida, Y. Ralchenko, J. Reader, J., NIST atomic spectra database, in NIST ASD Teamhttps://physics.nist.gov/asd. https://doi.org/10.18434/T4W30F. [Online; Accessed 25 December 2023] (2023)

  24. H. Ma, M. Liu, Y. Xu et al., Hyperfine structure constants for neutral and singly ionized vanadium by Fourier transform spectroscopy data. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 280(108085), 1–7 (2022). https://doi.org/10.1016/j.jqsrt.2022.108085

    Article  Google Scholar 

  25. A. Meftah, J.F. Wyart, W.Ü. Tchang-Brillet et al., Spectrum and energy levels of the Yb\(^{4+}\) free ion (Yb V). Phys. Scr. 88(045305), 1–12 (2013). https://doi.org/10.1088/0031-8949/88/04/045305

    Article  Google Scholar 

  26. P. Palmeri, E. Biémont, P. Quinet et al., Term analysis and hyperfine structure in neutral vanadium. Phys. Scr. 55, 586–598 (1997). https://doi.org/10.1088/0031-8949/55/5/011

  27. J. Pickering, Measurements of the hyperfine structure of atomic energy levels in Co I. Astrophys. J. Suppl. Ser. 107, 811–822 (1996). https://doi.org/10.1086/192382

    Article  ADS  Google Scholar 

  28. J. Prince, P. Quinet, Detailed analysis of configuration interaction and calculation of radiative transition rates in seven times ionized tungsten (W VIII). Atoms 3, 299–319 (2015). https://doi.org/10.3390/atoms3030299

    Article  ADS  Google Scholar 

  29. P. Quinet, J. Hansen, The influence of core excitations on energies and oscillator strengths of iron group elements. J. Phys. B Atom. Mol. Opt. Phys. 28, L213–L220 (1995). https://doi.org/10.1088/0953-4075/28/7/003

    Article  ADS  Google Scholar 

  30. G. Racah, Theory of complex spectra. IV. Phys. Rev. 76, 1352–1365 (1949). https://doi.org/10.1103/PhysRev.76.1352

    Article  ADS  Google Scholar 

  31. E. Saloman, A. Kramida, Critically evaluated energy levels, spectral lines, transition probabilities, and intensities of neutral vanadium (VI). Astrophys. J. Suppl. Ser. 231(18), 1–9 (2017). https://doi.org/10.3847/1538-4365/aa7e2a

    Article  Google Scholar 

  32. P. Sandars, J. Beck, Relativistic effects in many electron hyperfine structure I. Theory. Proc. R. Soc. A289, 97–107 (1965). https://doi.org/10.1098/rspa.1965.0251

    Article  ADS  Google Scholar 

  33. Y. Shan, A. Reiners, D. Fabbian et al., The CARMENES search for exoplanets around M dwarfs not-so-fine hyperfine-split vanadium lines in cool star spectra. Astron. Astrophys. 654(A118), 1–22 (2021). https://doi.org/10.1051/0004-6361/202141530

    Article  Google Scholar 

  34. Ł Sobolewski, L. Windholz, J. Kwela, Laser spectroscopy used in the investigation of the Zeeman—hyperfine structure of vanadium. J. Quant. Spectrosc. Radiat. Transf. (JQSRT) 242(106769), 1–5 (2020). https://doi.org/10.1016/j.jqsrt.2019.106769

    Article  Google Scholar 

  35. P. Uylings, A. Raassen, Orthogonal operators: applications, origin and outlook. Atoms 7(102), 1–14 (2019). https://doi.org/10.3390/atoms7040102

  36. J.F. Wyart, A. Meftah, W.Ü. Tchang-Brillet et al., Analysis of the free ion \(\text{Nd}^{3+}\) spectrum (Nd IV). J. Phys. B: Atom. Mol. Opt. Phys. 40, 3957–3972 (2007). https://doi.org/10.1088/0953-4075/40/19/013

Download references

Author information

Authors and Affiliations

Authors

Contributions

PU and TR are both founders of the current orthogonal operator method. PU prepared the manuscript; TR is responsible for analyzing the results, presentation of the tables and critically reading the manuscript.

Corresponding author

Correspondence to Peter Uylings.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendix A: p-shell orthogonal operators

Appendix A: p-shell orthogonal operators

The electrostatic structure of \(p^N\) configurations is described by the first-order parameter \(O_2\) and the effective higher-order parameter \(E_{\alpha }\). The contribution of \(F^2(pp)\) is given by:

$$\begin{aligned} O_2=\frac{3}{25} \sqrt{2} \cdot F^2(pp) \end{aligned}$$
(A1)

The magnetic structure is described by the operators \(z_p\), \(z_{\textrm{c}}\) and \(z_3\) for the spin–orbit effects and \(z_1\) for the spin–spin interaction; the associated parameters are \(\zeta _p\), \(A_{\textrm{c}}\), \(A_3\) and \(A_1\), respectively.

Table 11 Matrix elements of the electrostatic operators in \(p^2\)
Table 12 Reduced matrix elements of the double-vector operators in \(p^2\)
Table 13 Multiplication factors w.r.t. [8] for the entries of the three-electron operators \(t'_i\) and the four-electron operators \(f'_i\)

The spin–spin operator \(z_1\) has only one nonzero reduced matrix element \({\langle }^{3\!}P \parallel z_1 \parallel ^{3\!\!}P{\rangle }=10\sqrt{3}\). The magnitude of all magnetic operators in \(p^2\) equals 12. The physical content of all the \(p^N\) operators is given in Eqs. (A1), (A2) and (A3). Unlike the case of the d- and the f-shell, no additional three-particle electrostatic operator appears in \(p^3\). For the two-particle magnetic operators \(A_{\textrm{c}}\) and \(A_3\), one obtains the below first- and second-order contributions:

$$\begin{aligned} A_{\textrm{c}}= & {} \frac{1}{4} \sqrt{2}\left( -5M^0(pp)+\frac{3}{10}P^2(p\rightarrow p')\right) \nonumber \\ A_3= & {} \frac{1}{4} \sqrt{\frac{2}{5}}\left( -37M^0(pp)+\frac{3}{10}P^2(p\rightarrow p')\right) \end{aligned}$$
(A2)
$$\begin{aligned} A_1= & {} -\frac{2}{5} \sqrt{15} \cdot M^0(pp) \end{aligned}$$
(A3)

where the electrostatic spin–orbit (EL-SO) contribution \(P^2(p \rightarrow p')\) is given by:

$$\begin{aligned} P^2(p \rightarrow p')=\sum \!\!\!\!\!\!\!\!\!\int _{p \rightarrow p'} \frac{2 \zeta (p p') R^2(pp;pp')}{E_{pp'}} \end{aligned}$$

The occurring \(M^0\) integrals are defined in accordance with equation (3) of [12]:

$$\begin{aligned} M^k(ab)=\frac{1}{4}\alpha ^2\! \!\! \int _0^{\infty } \hspace{-10.0pt}\int _0^{\infty } \!\!\! \textrm{d}r_1 \textrm{d}r_2 \,a^2(1)b^2(2) \;\frac{r_2^k}{r_1^{k+3}} \; \varepsilon (r_1-r_2) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uylings, P., Raassen, T. Orthogonal operators: extension to hyperfine structure and equivalent p- and f-electrons. Eur. Phys. J. D 78, 38 (2024). https://doi.org/10.1140/epjd/s10053-024-00828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00828-4

Navigation