Skip to main content
Log in

Part and whole in wavefunction/DFT embedding

  • Feature Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT)-based subsystem and embedding methods have found a widespread use in Quantum Chemistry. The combination of correlated wavefunction (WF) methods and density-based embedding methods is particularly promising for accurate descriptions of complex systems. Here, we address some conceptual issues in such WF/DFT methods concerning (1) the interpretation of wavefunctions and densities in these frameworks, (2) the interpretation of subsystem and supersystem density changes as a polarization of the electronic system, and (3) non-orthogonality effects between wavefunctions of ground and excited states in WF/DFT embedding making use of state-specific embedding potentials. Illustrative examples are provided to analyze the significance of these issues in practical calculations. We find that physically reasonable subsystem densities and subsystem dipole moments can often be obtained from subsystem calculations making use of typical setups in practice, in spite of formal issues that are in principle in conflict with such interpretations. For excited-state WF/DFT calculations, we demonstrate that orthogonality violations due to state-specific embedding potentials are usually small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Libisch F, Huang C, Carter EA (2014) Acc Chem Res 47:2768

    Article  CAS  Google Scholar 

  2. Gomes ASP, Jacob CR (2012) Annu Rep Prog Chem Sect C Phys Chem 108:222

    Article  CAS  Google Scholar 

  3. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198

    Article  CAS  Google Scholar 

  4. Chung LW, Hirao H, Li X, Morokuma K (2012) WIREs Comput Mol Sci 2:327

    Article  CAS  Google Scholar 

  5. Jacob CR, Neugebauer J (2014) WIREs Comput Mol Sci 4:325

    Article  CAS  Google Scholar 

  6. Neugebauer J (2009) ChemPhysChem 10:3148

    Article  CAS  Google Scholar 

  7. Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050

    Article  CAS  Google Scholar 

  8. Elliott P, Cohen MH, Wasserman A, Burke K (2009) J Chem Theory Comput 5:827

    Article  CAS  Google Scholar 

  9. Elliott P, Burke K, Cohen MH, Wasserman A (2010) Phys Rev A 82:024501

    Article  Google Scholar 

  10. Senatore G, Subbaswamy KR (1986) Phys Rev B 34:5754

    Article  CAS  Google Scholar 

  11. Cortona P (1991) Phys Rev B 44:8454

    Article  Google Scholar 

  12. Wesolowski TA, Weber J (1996) Chem Phys Lett 248:71

    Article  CAS  Google Scholar 

  13. Wesolowski TA (2006) One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modeling of complex polyatomic systems. In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 10. World Scientific, Singapore, pp 1–82

    Chapter  Google Scholar 

  14. Wesolowski TA, Shedge S, Zhou X (2015) Chem Rev 115:5891

    Article  CAS  Google Scholar 

  15. Govind N, Wang YA, da Silva AJR, Carter EA (1998) Chem Phys Lett 295:129

    Article  CAS  Google Scholar 

  16. Wesolowski TA (2008) Phys Rev A 77:012504

    Article  Google Scholar 

  17. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  18. Svensson M et al (1996) J Phys Chem 100:19357

    Article  CAS  Google Scholar 

  19. Govind N, Wang YA, Carter EA (1999) J Chem Phys 110:7677

    Article  CAS  Google Scholar 

  20. Huang C, Pavone M, Carter EA (2011) J Chem Phys 134:154110

    Article  Google Scholar 

  21. Daday C, König C, Valsson O, Neugebauer J, Filippi C (2013) J Chem Theory Comput 9:2355

    Article  CAS  Google Scholar 

  22. Klüner T, Govind N, Wang YA, Carter EA (2002) J Chem Phys 116:42

    Article  Google Scholar 

  23. We would also like to refer the reader to the discussion in Refs. [76] and [77] at this point

  24. Gomes ASP, Jacob CR, Visscher L (2008) Phys Chem Chem Phys 10:5353

    Article  CAS  Google Scholar 

  25. Gräfenstein J, Cremer D (2000) Chem Phys Lett 316:569

    Article  Google Scholar 

  26. Weimer M, Della Sala F, Grling A (2008) J Chem Phys 128:144109

    Article  Google Scholar 

  27. Kurzweil Y, Lawler KV, Head-Gordon M (2009) Mol Phys 107:2103

    Article  CAS  Google Scholar 

  28. Wesolowski TA (2004) J Am Chem Soc 126:11444

    Article  CAS  Google Scholar 

  29. Knizia G, Chan GK-L (2013) J Chem Theory Comput 9:1428

    Article  CAS  Google Scholar 

  30. Roncero O et al (2008) J Chem Phys 129:184104

    Article  CAS  Google Scholar 

  31. Fux S, Jacob ChR, Neugebauer J, Visscher L, Reiher M (2010) J Chem Phys 132:164101

    Article  Google Scholar 

  32. Goodpaster JD, Ananth N, Manby FR, Miller TF III (2010) J Chem Phys 133:084103

    Article  Google Scholar 

  33. Manby FR, Stella M, Goodpaster JD, Miller TF III (2012) J Chem Theory Comput 8:2564

    Article  CAS  Google Scholar 

  34. Bernard YA, Dułak M, Kamiński JW, Wesolowski TA (2008) J Phys A Math Theor 41:055302

    Article  Google Scholar 

  35. Wesolowski TA, Savin A (2013) In: Recent progress in orbital-free density functional theory, vol 6, chap 9. World Scientific, pp 275–295

  36. Khait YG, Hoffmann MR (2010) J Chem Phys 133:044107

    Article  Google Scholar 

  37. Perdew JP, Levy M (1985) Phys Rev B 31:6264

    Article  CAS  Google Scholar 

  38. Wesolowski TA (2014) J Chem Phys 140:18A530

    Article  Google Scholar 

  39. Zbiri M, Atanasov M, Daul C, Garcia-Lastra JM, Wesolowski TA (2004) Chem Phys Lett 397:441

    Article  CAS  Google Scholar 

  40. Humbert-Droz M, Zhou X, Shedge SV, Wesolowski TA (2013) Theor Chem Acc 132:1405

    Google Scholar 

  41. Kanan DK, Sharifzadeh S, Carter EA (2012) Chem Phys Lett 519–520:18

    Article  Google Scholar 

  42. Casida ME, Wesolowski TA (2004) Int J Quantum Chem 96:577

    Article  CAS  Google Scholar 

  43. Neugebauer J, Curutchet C, Muños-Losa A, Mennucci B (2010) J Chem Theory Comput 6:1843

    Article  CAS  Google Scholar 

  44. Wesolowski T, Warshel A (1994) J Phys Chem 98:5183

    Article  CAS  Google Scholar 

  45. Jacob ChR, Jensen L, Neugebauer J, Visscher L (2006) Phys Chem Chem Phys 8:2349

    Article  CAS  Google Scholar 

  46. de Silva P, Wesolowski TA (2012) J Chem Phys 137:094110

    Article  Google Scholar 

  47. Jacob CR, Wesolowski TA, Visscher L (2005) J Chem Phys 123:174104

    Article  Google Scholar 

  48. Pavanello M, Neugebauer J (2011) J Chem Phys 135:234103

    Article  Google Scholar 

  49. Pavanello M, Voorhis TV, Visscher L, Neugebauer J (2013) J Chem Phys 138:054101

    Article  Google Scholar 

  50. Solovyeva A, Pavanello M, Neugebauer J (2014) J Chem Phys 140:164103

    Article  Google Scholar 

  51. Hong G, Rosta E, Warshel A (2006) J Phys Chem B 110:19570

    Article  CAS  Google Scholar 

  52. Xiang Y, Warshel A (2008) J Phys Chem B 112:1007

    Article  CAS  Google Scholar 

  53. Amsterdam density functional program. Theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  54. Te Velde G et al (2001) J Comput Chem 22:931

    Article  Google Scholar 

  55. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142

    Article  Google Scholar 

  56. Perdew JP et al (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  57. Jacob CR, Neugebauer J, Visscher L (2008) J Comput Chem 29:1011

    Article  CAS  Google Scholar 

  58. Lembarki A, Chermette H (1994) Phys Rev A 50:5328

    Article  CAS  Google Scholar 

  59. Aquilante F et al (2010) J Comput Chem 31:224

    Article  CAS  Google Scholar 

  60. Dresselhaus T et al (2015) J Chem Phys 142:044111

    Article  Google Scholar 

  61. Jacob CR et al (2011) J Comput Chem 32:2328

    Article  CAS  Google Scholar 

  62. Dułak M, Kamiński JW, Wesolowski TA (2009) Int J Quantum Chem 109:1886

    Article  Google Scholar 

  63. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  64. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  65. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  66. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  67. Bader RFW (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  68. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    Article  CAS  Google Scholar 

  69. Sedlak R et al (2013) J Chem Theory Comput 9:3364

    Article  CAS  Google Scholar 

  70. Jacob CR, Beyhan SM, Visscher L (2007) J Chem Phys 126:234116

    Article  Google Scholar 

  71. Lastra JMG, Kaminski JW, Wesolowski TA (2008) J Chem Phys 129:074107

    Article  Google Scholar 

  72. Malmqvist P-Å, Roos BO (1989) Chem Phys Lett 155:189

    Article  CAS  Google Scholar 

  73. Daday C, König C, Neugebauer J, Filippi C (2014) ChemPhysChem 15:3205

    Article  CAS  Google Scholar 

  74. Neugebauer J (2007) J Chem Phys 126:134116

    Article  Google Scholar 

  75. Höfener S, Gomes ASP, Visscher L (2012) J Chem Phys 136:044104

    Article  Google Scholar 

  76. Wesolowski TA (2002) Phys Rev Lett 88:209701

    Article  Google Scholar 

  77. Klüner T, Govind N, Wang YA, Carter EA (2002) Phys Rev Lett 88:209702

    Article  Google Scholar 

Download references

Acknowledgments

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Neugebauer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresselhaus, T., Neugebauer, J. Part and whole in wavefunction/DFT embedding. Theor Chem Acc 134, 97 (2015). https://doi.org/10.1007/s00214-015-1697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1697-4

Keywords

Navigation