Skip to main content
Log in

A dispersion-corrected density functional theory case study on ethyl acetate conformers, dimer, and molecular crystal

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a dispersion-corrected density functional theory case study on recently reported apparently difficult systems (Boese et al. in Chem Phys Chem 14:799, 2013). The relative stability of the trans, gauche, and cis conformers of ethyl acetate, the dissociation energy of the (transtrans) dimer, and the structure and electronic lattice energy of the corresponding molecular crystal are calculated. We utilize the generalized gradient approximation density functionals PBE and BLYP, the hybrid functional B3LYP, and the double-hybrid functional B2PLYP. It is shown that all semilocal density functionals must be corrected for missing long-range electron correlation, a.k.a. London dispersion interaction. The performance of the ab initio dispersion correction DFT-D3 is excellent and significantly improves the results compared to the uncorrected functionals and compared to the older more empirical DFT-D2 correction. The three-body dispersion contribution to the lattice energy is 7 %, while its impact on the crystal geometry and the conformer energies is negligible. A nonlocal correction approach termed DFT-NL is also tested and shows good performance comparable to the DFT-D3 results. Overall, it is shown that dispersion-corrected density functional theory can accurately describe the properties of ethyl acetate in various states ranging from single-molecule conformers to the infinite periodic molecular crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  2. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, New York

    Book  Google Scholar 

  3. Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, Berlin

    Book  Google Scholar 

  4. Paverati R, Truhlar DG (2013) Phil Trans R Soc A, arXiv (in press). http://arxiv.org/abs/1212.0944

  5. Kristyán S, Pulay P (1994) Chem Phys Lett 229:175

    Article  Google Scholar 

  6. Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134

    Article  Google Scholar 

  7. Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315

    Article  CAS  Google Scholar 

  8. Allen M, Tozer DJ (2002) J Chem Phys 117:11113

    Article  CAS  Google Scholar 

  9. Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  10. Kaplan IG (2006) Intermolecular interactions. Wiley, Chichester

    Book  Google Scholar 

  11. Grimme S (2011) WIREs Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  12. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741

    Article  CAS  Google Scholar 

  13. Klimes J, Michaelides A (2012) J Chem Phys 137:120901

    Article  Google Scholar 

  14. Johnson ER, Mackie ID, Di Labio GA (2009) J Phys Org Chem 22:1127

    Article  CAS  Google Scholar 

  15. Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107

    Article  Google Scholar 

  16. Brandenburg JG, Grimme S (2013) Top Curr Chem (in press)

  17. Woodley SM, Catlow R (2008) Nat Mater 7:937

    Article  CAS  Google Scholar 

  18. Neumann MA, Leusen FJJ, Kendrick J (2008) Angew Chem Int Ed 47:2427

    Article  CAS  Google Scholar 

  19. Vydrov OA, Van Voorhis T (2010) J Chem Phys 133:244103

    Article  Google Scholar 

  20. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) Cryst Eng Commun 10:405

    CAS  Google Scholar 

  21. Jacobsen H, Cavallo L (2012) Chem Phys Chem 13:562

    Article  CAS  Google Scholar 

  22. Nanda K, Beran G (2012) J Chem Phys 138:174106

    Article  Google Scholar 

  23. Wen S, Nanda K, Huang Y, Beran G (2012) Phys Chem Chem Phys 14:7578

    Article  CAS  Google Scholar 

  24. Otero-de-la-Roza A, Johnson ER (2012) J Chem Phys 137:054103

    Article  CAS  Google Scholar 

  25. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    Article  CAS  Google Scholar 

  26. Boese D, Kirchner M, Echeverria GA, Boese R (2013) Chem Phys Chem 14:799

    Article  CAS  Google Scholar 

  27. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  28. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104

    Article  Google Scholar 

  29. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  Google Scholar 

  30. See http://www.thch.uni-bonn.de/tc/dftd3

  31. Johnson ER, Becke AD (2006) J Chem Phys 124:174104

    Article  Google Scholar 

  32. Axilrod BM, Teller E (1943) J Chem Phys 11:299. doi:10.1063/1.1723844

    Article  CAS  Google Scholar 

  33. Hujo W, Grimme S (2013) J Chem Theory Comput 9:308–315

    Article  CAS  Google Scholar 

  34. Grimme S (2012) Chem Eur J 18(32):9955

    Article  CAS  Google Scholar 

  35. Grimme S (2006) Angew Chem Int Ed 45:4460

    Article  CAS  Google Scholar 

  36. TURBOMOLE 6.4: Ahlrichs R, Armbruster MK, Bär M, Baron HP, Bauernschmitt R, Crawford N, Deglmann P, Ehrig M, Eichkorn K, Elliott S, Furche F, Haase F, Häser M, Hättig C, Hellweg A, Horn H, Huber C, Huniar U, Kattannek M, Kölmel C, Kollwitz M, May K, Nava P, Ochsenfeld C, Öhm H, Patzelt H, Rappoport D, Rubner O, Schäfer A, Schneider U, Sierka M, Treutler O, Unterreiner B, von Arnim M, Weigend F, Weis P, Weiss H (2012) Universität Karlsruhe 2012. See also: http://www.turbomole.com

  37. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  38. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  39. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283

    Article  CAS  Google Scholar 

  40. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  42. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  43. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  47. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  49. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  50. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  51. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  52. Goerigk L, Kruse H, Grimme S (2011) Chem Phys Chem 12:3421

    Article  CAS  Google Scholar 

  53. Stull DR (1947) Ind Eng Chem 39:517

    Article  CAS  Google Scholar 

  54. Brandenburg JG, Grimme S, Jones PG, Markopoulos G, Hopf H, Cyranski MK, Kuck D (2013) Chem Eur J 19:9930

    Article  CAS  Google Scholar 

  55. Tkatchenko A, DiStasio RA, Car R, Scheffler M (2012) Phys Rev Lett 108:236402

    Article  Google Scholar 

  56. Otero-de-la-Roza A, Johnson ER (2013) J Chem Phys 138:054103

    Article  CAS  Google Scholar 

  57. Reckien W, Janetzko F, Peintinger MF, Bredow T (2012) J Comput Chem 33:2023

    Article  CAS  Google Scholar 

  58. Grimme S (2012) Chem Eur J 18:9955

    Article  CAS  Google Scholar 

  59. von Lilienfeld OA, Tkatchenko A (2010) J Chem Phys 132:234109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Grimme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, J.G., Grimme, S. A dispersion-corrected density functional theory case study on ethyl acetate conformers, dimer, and molecular crystal. Theor Chem Acc 132, 1399 (2013). https://doi.org/10.1007/s00214-013-1399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1399-8

Keywords

Navigation