Skip to main content

Advertisement

Log in

The rich and complex potential energy surface of the ethanol dimer

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The potential energy surface of the ethanol dimer is systematically explored via density functional theory and high level ab initio computations. A picture with a multitude of local minima very close in energy emerges. Three groups of interactions are at play stabilizing the dimers. On one hand, electrostatic attraction leads to a number of structures where dimers interact via hydrogen bonds. Our computations also reveal a large number of structures where the dominant stabilization arises from C–H···O hydrogen bonds and a smaller set of structures stabilized by purely dispersive interactions between the alkyl chains. Calculated shifts of the stretching O–H frequencies are in very good agreement with experimental values. Energy decomposition analysis shows that the electrostatic term dominates the stabilization of the O–H···O hydrogen bond clusters, while for the other dimers, polarization, charge transfer, and dispersion become the major stabilizing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perchard JP, Josien ML (1968) J Chim Phys Phys-Chim Biol 65:1834–1855

    CAS  Google Scholar 

  2. Perchard JP, Josien ML (1968) J Chim Phys Phys-Chim Biol 65:1856–1875

    CAS  Google Scholar 

  3. Ehbrecht M, Huisken F (1997) J Phys Chem A 101:7768–7777

    Article  CAS  Google Scholar 

  4. Haber T, Schmitt U, Suhm MA (1999) Phys Chem Chem Phys 1:5573–5582

    Article  CAS  Google Scholar 

  5. Provencal RA, Casaes RN, Roth K, Paul JB, Chapo CN, Saykally RJ, Tschumper GS, Schaefer HF (2000) J Phys Chem A 104:1423–1429

    Article  CAS  Google Scholar 

  6. Hearn JPI, Cobley RV, Howard BJ (2005) J Chem Phys 123:134324

    Article  Google Scholar 

  7. Emmeluth C, Dyczmons V, Kinzel T, Botschwina P, Suhm MA, Yanez M (2005) Phys Chem Chem Phys 7:991–997

    Article  CAS  Google Scholar 

  8. Wassermann TN, Suhm MA (2010) J Phys Chem A 114:8223–8233

    Article  CAS  Google Scholar 

  9. Dyczmons V (2004) J Phys Chem A 108:2080–2086

    Article  CAS  Google Scholar 

  10. Gonzalez L, Mo O, Yanez M (1999) J Chem Phys 111:3855–3861

    Article  CAS  Google Scholar 

  11. Durig JR, Larsen RA (1990) J Mol Struct 238:195–222

    Article  CAS  Google Scholar 

  12. Cabellos J, Ortiz-Chi F, Ramírez A, Merino G (2013) Bilatu. Mérida, Cinvestav

    Google Scholar 

  13. Saunders M (2004) J Comput Chem 25:621–626

    Article  CAS  Google Scholar 

  14. Grande-Aztatzi R, Martínez-Alanis PR, Cabellos JL, Osorio E, Martínez A, Merino G (2014) J Comput Chem 35:2288–2296

    Article  CAS  Google Scholar 

  15. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  16. Dunning TH, Hay PJ (1977) Modern theoretical chemistry. H. F. Schaefer, New York

    Google Scholar 

  17. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  18. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, Revision C.01. Wallingford

  20. Grimme S (2011) Wiley Interdiscip Rev-Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  21. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  22. Su PF, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  23. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  24. Ibarguen C, Manrique-Moreno M, Hadad CZ, David J, Restrepo A (2013) Phys Chem Chem Phys 15:3203–3211

    Article  Google Scholar 

  25. Zapata-Escobar A, Manrique-Moreno M, Guerra D, Hadad CZ, Restrepo A (2014) J Chem Phys 140:184312

    Article  Google Scholar 

  26. Laury ML, Carlson MJ, Wilson AK (2012) J Comput Chem 33:2380–2387

    Article  CAS  Google Scholar 

  27. Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963–10970

    Article  CAS  Google Scholar 

  28. Hincapie G, Acelas N, Castano M, David J, Restrepo A (2010) J Phys Chem A 114:7809–7814

    Article  CAS  Google Scholar 

  29. David J, Guerra D, Restrepo A (2009) J Phys Chem A 113:10167–10173

    Article  CAS  Google Scholar 

  30. Acelas N, Hincapie G, Guerra D, David J, Restrepo A (2013) J Chem Phys 139:044310

    Article  Google Scholar 

Download references

Acknowledgments

Conacyt (Grants INFRA-2013-01-204586) and Moshinsky Foundation supported the work in Mérida. The CGSTIC (Xiuhcóatl) at Cinvestav is acknowledged for allocation of computational resources. Partial funding for this work was provided by Universidad de Antioquia via “Estrategia de sostenibilidad 2015–2016.” Martin Suhm and Tobias Wassermann kindly provided Cartesian coordinates for the structures reported in their work [8]. A.V.-C. and D.M. thank Contact for the PhD fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Merino or José Luis Cabellos.

Additional information

Published as part of the special collection of articles derived from the XI Girona Seminar and focused on Carbon, Metal, and Carbon–Metal Clusters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Caamal, A., Ortiz-Chi, F., Moreno, D. et al. The rich and complex potential energy surface of the ethanol dimer. Theor Chem Acc 134, 16 (2015). https://doi.org/10.1007/s00214-015-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1615-9

Keywords

Navigation