Skip to main content
Log in

Interpretation of exchange and correlation using natural orbital CI expansions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work we propose definitions of exchange and correlation at post-SCF level within the framework of the natural orbital CI expansion of the wave function. First, following the assumption that the Coulomb correlation is introduced through the crossed products of Slater determinants, we define exchange and correlation densities having a simple mathematical and physical interpretation and whose associated holes satisfy a series of necessary constrains and normalization rules. Thus, in our scheme the exchange and correlation densities are associated with intra- and inter-configurational terms, respectively. In turn, two different terms contribute to the correlation density. One stems from the fluctuations experienced by the 1-electron density among different electron configurations. A second term corresponds to the inter-configurational part of the 2-electron density. Expressions for post-SCF exchange and correlation potentials and bond orders have been obtained and implemented for the case of two electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although FCI calculations are unmanageable even for systems with few electrons and medium basis sets, it is better to workout our mathematical treatment from a FCI wave function, avoiding the problem of the absence of “orbital energies” for NSOs. In practical applications, the electron configurations in iterative natural orbital CI are selected by looking at the occupation numbers (instead of the orbital energies) of the NSOs resulting from the diagonalization of the 1-electron density matrix in the previous step.

References

  1. Martín-Pendás A, Francisco E, Blanco MA (2004) J Comput Chem 26:344

    Article  Google Scholar 

  2. Pan X-Y, Sahni V, Massa L (2007) Int J Quantum Chem 107:816

    Article  CAS  Google Scholar 

  3. Scuseria GE, Staroverov VN (2005) Progress in the development of exchange-correlation functionals. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years, a volume of technical and historical perspectives. Elsevier, Amsterdam

    Google Scholar 

  4. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  5. Gilbert TL (1975) Phys Rev B 12:2111

    Article  Google Scholar 

  6. Levy M (1979) Proc Natl Acad Sci USA 76:6062

    Article  CAS  Google Scholar 

  7. Valone SM (1980) J Chem Phys 73:1344

    Article  Google Scholar 

  8. Piris M (2007) Natural orbital functional theory. In: Mazziotti DA (ed) Reduced density matrix mechanics: with application to many-electron atoms and molecules, Adv Chem Phys 134:387–428. Wiley, New York

    Google Scholar 

  9. Mazziotti DA (2012) Chem Rev 112:244

    Article  CAS  Google Scholar 

  10. Bender CF, Davidson ER (1966) J Phys Chem 70:2675

    Article  CAS  Google Scholar 

  11. Bender CF, Davidson ER (1967) J Chem Phys 47:360

    Article  CAS  Google Scholar 

  12. Bender CF, Davidson ER (1969) Phys Rev 183:23

    Article  CAS  Google Scholar 

  13. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover publications, New York, pp 255–257

    Google Scholar 

  14. Davidson ER (1972) Rev Mod Phys 44:451

    Article  CAS  Google Scholar 

  15. McWeeny R (1960) Rev Mod Phys 32:335

    Article  Google Scholar 

  16. Buijse MA, Baerends EJ (2002) Mol Phys 100:401

    Article  CAS  Google Scholar 

  17. Goedecker S, Umrigar CJ (1998) Phys Rev Lett 81:866

    Article  CAS  Google Scholar 

  18. Gritsenko O, Pernal K, Baerends EJ (2005) J Chem Phys 122:204102

    Article  Google Scholar 

  19. Fulton RL (1993) J Phys Chem 97:7516

    Article  CAS  Google Scholar 

  20. Wang Y-G, Werstiuk NH (2003) J Comput Chem 24:379

    Article  Google Scholar 

  21. Bader RFW, Stephens ME (1975) J Am Chem Soc 97:7391

    Article  CAS  Google Scholar 

  22. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  23. Mayer I (1986) Int J Quantum Chem 29:73

    Article  CAS  Google Scholar 

  24. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304

    Article  CAS  Google Scholar 

  25. Ángyán JG, Loos M, Mayer I (1994) J Phys Chem 98:5244

    Article  Google Scholar 

  26. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J. W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  27. Löwdin PO, Shull H (1956) J Chem Phys 25:1035

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Xunta de Galicia from the Galician government and Ministerio de Ciencia y Tecnología from the Spanish government for financial support. Special thanks to Prof. Christian Van Alsenoy for carefully reading the manuscript and for giving helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Mandado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 77 kb)

Appendix

Appendix

Starting from Eqs. (6) and (7), in which the αα and αβ 2-electron densities are expressed as summation of intra-configurational and inter-configurational parts, and replacing each intra-configurational term by the expression of the 2-electron density for mono-configurational wave functions as given by:

$$ \rho_{II}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right) = \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\alpha } \left( {r_{2} } \right) - \rho_{X,I}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right) $$
(45)
$$ \rho_{II}^{\alpha \beta } \left( {r_{1} ,r_{2} } \right) = \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\beta } \left( {r_{2} } \right) $$
(46)

one obtains

$$ \rho^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right) = \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\alpha } \left( {r_{2} } \right) - \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{X,I}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right)} + \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I} c_{J} \rho_{IJ}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right)} } } $$
(47)
$$ \rho^{\alpha \beta } \left( {r_{1} ,r_{2} } \right) = \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\beta } \left( {r_{2} } \right) + \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I} c_{J} \rho_{IJ}^{\alpha \beta } \left( {r_{1} ,r_{2} } \right)} } } $$
(48)

where \( \rho_{X,I}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right) \) represents the exchange density for a mono-configurational wave function. On the other hand, the αα and αβ products of 1-electron densities are given by:

$$ \rho^{\alpha } \left( {r_{1} } \right)\rho^{\alpha } \left( {r_{2} } \right) = \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J = 1}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\alpha } \left( {r_{2} } \right)} } $$
(49)
$$ \rho^{\alpha } \left( {r_{1} } \right)\rho^{\beta } \left( {r_{2} } \right) = \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J = 1}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\beta } \left( {r_{2} } \right)} } $$
(50)

Introducing Eqs. (47) and (49) into Eq. (10) (with σ = α and σ′ = α), and Eqs. (48) and (50) into Eq. (10) (with σ = α and σ′ = β) one arrives at:

$$ \begin{aligned} \rho_{\text{XC}}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right) & = \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J = 1}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\alpha } \left( {r_{2} } \right)} } - \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\alpha } \left( {r_{2} } \right)} \\ & \quad + \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{X,I}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right)} - \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I} c_{J} \rho_{IJ}^{\alpha \alpha } \left( {r_{1} ,r_{2} } \right)} } \\ \end{aligned} $$
(51)
$$ \rho_{\text{XC}}^{\alpha \beta } \left( {r_{1} ,r_{2} } \right) = \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J = 1}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\beta } \left( {r_{2} } \right)} } - \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\beta } \left( {r_{2} } \right) - \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I} c_{J} \rho_{IJ}^{\alpha \beta } \left( {r_{1} ,r_{2} } \right)} } } $$
(52)

The first two terms on the right hand of Eqs. (51) and (52) can be combined yielding, respectively, Eqs. (53) and (54),

$$ \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\alpha } \left( {r_{2} } \right)} + \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} (c_{I}^{2} - 1)\rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\alpha } \left( {r_{2} } \right)} } $$
(53)
$$ \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{JJ}^{\beta } \left( {r_{2} } \right)} + \sum\limits_{I = 1}^{\text{ND}} {c_{I}^{2} (c_{I}^{2} - 1)\rho_{II}^{\alpha } \left( {r_{1} } \right)\rho_{II}^{\beta } \left( {r_{2} } \right)} } $$
(54)

which then yield, taking into account that \( (c_{I}^{2} - 1) = - \sum\nolimits_{J \ne I} {c_{J}^{2} } \),

$$ \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\left[ {\rho_{JJ}^{\alpha } \left( {r_{2} } \right) - \rho_{II}^{\alpha } \left( {r_{2} } \right)} \right]} } $$
(55)
$$ \sum\limits_{I = 1}^{\text{ND}} {\sum\limits_{J \ne I}^{\text{ND}} {c_{I}^{2} c_{J}^{2} \rho_{II}^{\alpha } \left( {r_{1} } \right)\left[ {\rho_{JJ}^{\beta } \left( {r_{2} } \right) - \rho_{II}^{\beta } \left( {r_{2} } \right)} \right]} } $$
(56)

Replacing Eqs. (55) and (56) in Eqs. (51) and (52) finally leads to Eqs. (11) and (12), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandado, M. Interpretation of exchange and correlation using natural orbital CI expansions. Theor Chem Acc 132, 1364 (2013). https://doi.org/10.1007/s00214-013-1364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1364-6

Keywords

Navigation