Skip to main content

The one-electron picture in the Piris natural orbital functional 5 (PNOF5)

  • Regular Article
  • Chapter
  • First Online:
8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

Abstract

The natural orbital functional theory provides two complementary representations of the one-electron picture in molecules, namely, the natural orbital (NO) representation and the canonical orbital (CO) representation. The former arises directly from the optimization process solving the corresponding Euler equations, whereas the latter is attained from the diagonalization of the matrix of Lagrange multipliers obtained in the NO representation. In general, the one-particle reduced-density matrix (1-RDM) and the Lagrangian cannot be simultaneously brought to the diagonal form, except for the special Hartree-Fock case. The 1-RDM is diagonal in the NO representation, but not the Lagrangian, which is only a Hermitian matrix. Conversely, in the CO representation, the Lagrangian is diagonal, but not the 1-RDM. Combining both representations we have the whole picture concerning the occupation numbers and the orbital energies. The Piris natural orbital functional 5 leads generally to the localization of the molecular orbitals in the NO representation. Accordingly, it provides an orbital picture that agrees closely with the empirical valence shell electron pair repulsion theory and the Bent’s rule, along with the theoretical valence bond method. On the other hand, the equivalent CO representation can afford delocalized molecular orbitals adapted to the symmetry of the molecule. We show by means of the extended Koopmans’ theorem that the one-particle energies associated with the COs can yield reasonable principal ionization potentials when the 1-RDM remains close to the diagonal form. The relationship between NOs and COs is illustrated by several examples, showing that both orbital representations complement each other.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bent HA (1961) An Appraisal of Valence-bond Structures and Hybridization in Compounds of the First-row elements. Chem Rev 61(3):275–311

    Article  CAS  Google Scholar 

  2. Brueckner KA, WadaW (1955) Nuclear saturation and two-body: self-consistent solutions and the effects of the exclusion principle. Phys Rev 103:1008–1016

    Google Scholar 

  3. Coulson CA, Longuet-Higgins HC (1947) The electronic structure of conjugated systems. I. General theory. Proc R Soc Lond A191:39–60

    Google Scholar 

  4. Day OW, Smith DW, Garrod C (1974) A generalization of the hartree-fock one-particle potential. Int J Quantum Chem Symp 8(S8):501–509

    Article  CAS  Google Scholar 

  5. Day OW, Smith DW, Morrison RC (1975) Extension of Koopmans’ theorem. II. Accurate ionization energies from correlated wavefunctions for closed-shell atoms. J Chem Phys 62(1): 115–119

    CAS  Google Scholar 

  6. Donnelly RA (1979) On fundamental difference between energy functionals based on first- and second-order density matrices. J Chem Phys 71(7):2874–2879

    Article  CAS  Google Scholar 

  7. Dunning Jr. TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    CAS  Google Scholar 

  8. Fock VA (1930) Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper- problems. Z Phys 61(1–2):126–148

    Google Scholar 

  9. Gilbert TL (1975) Hohenberg-Kohn theorem for nonlocal external potentials. Phys Rev B 12(6):2111–2120

    Article  Google Scholar 

  10. Gillespie RJ, Nyholm RS (1957) The valence-shell electron-pair repulsion theory. Quart Rev Chem Soc 11:339–80

    Article  CAS  Google Scholar 

  11. Goedecker S, Umrigar CJ (2000) Natural Orbital Functional Theory. In: Cioslowski J (ed.) Many-electron densities and reduced density matrices, pp 165–181. Kluwer, New York

    Chapter  Google Scholar 

  12. Hartree DR (1928) The wave mechanics of an atom with a noncoulomb central field. Part I. Theory and Methods. Proc. Camb Phil. Soc. 24(1):89–110

    Article  CAS  Google Scholar 

  13. Heitler W, London F (1927) Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z Phys 44(6–7):455–472

    CAS  Google Scholar 

  14. Hund F (1928) Zur Deutung der Molekelspektren. IV. Z Phys 51(11–12):759–795

    Article  CAS  Google Scholar 

  15. Jimenez-Hoyos CA, Henderson TM, Scuseria GE (2011) Generalized Hartree-Fock Description of Molecular Dissociation. J Chem Theory Comput 7:2667–2674

    Article  CAS  Google Scholar 

  16. Johnson III RD (ed.) (2011) NIST computational chemistry comparison and benchmark database, NIST standard reference database Num 101, Release 15b. http://cccbdb.nist.gov/

    Google Scholar 

  17. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  18. Koopmans TA (1934) Ü ber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1(1–6):104–113

    Article  Google Scholar 

  19. Kutzelnigg W, Mukherjee D (1999) Cumulant expansion of the reduced density matrices. J Chem Phys 110(6):2800–2809

    Article  CAS  Google Scholar 

  20. Leiva P, Piris M (2006) Calculation of vertical ionization potentials with the Piris natural orbital functional. J Mol Struct Theochem 770(1–3):45–49

    Article  CAS  Google Scholar 

  21. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA 76(12):6062–6065

    Article  CAS  Google Scholar 

  22. Levy M (1987) Density matrices and density functionals. In: Erdahl R, Smith VHJ (eds.) Density matrices and density functionals. Reidel, Dordrecht, pp 479–498

    Chapter  Google Scholar 

  23. Linderberg J, Ö hrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  24. Lopez X, Ruiperez F, Piris M, Matxain JM, Matito E, Ugalde JM (2012) Performance of PNOF5 natural orbital functional for radical formation reactions: hydrogen atom abstraction and C–C and O–O homolytic bond cleavage in selected molecules. J Chem Theory Comput 8:2646–2652

    Article  CAS  Google Scholar 

  25. Lowdin PO (1955) Quantum theory of many-particle systems. I. Phys Rev 97(6):1490–1508

    Article  Google Scholar 

  26. Matxain JM, Piris M, Mercero JM, Lopez X, Ugalde JM (2012) sp3 Hybrid orbitals and ionization energies of methane from PNOF5. Chem Phys Lett 531:272–274

    Article  CAS  Google Scholar 

  27. Matxain JM, Piris M, Ruipérez F, Lopez X, Ugalde JM (2011) Homolytic molecular dissociation in natural orbital functional theory. Phys Chem Chem Phys 13(45):20129–20135

    Article  CAS  Google Scholar 

  28. Matxain JM, Piris M, Uranga J, Lopez X, Merino G, Ugalde JM (2012) Nature of chemical bonds by means of NOFT. Chem Phys Chem 13:2297–2303

    Article  CAS  Google Scholar 

  29. Mazziotti DA (1998) Approximate solution for electron correlation through the use of Schwinger probes. Chem Phys Lett 289:419–427

    Article  CAS  Google Scholar 

  30. Mazziotti DA (2007) Variational two-electron reduced-densitymatrix theory. In: Mazziotti DA (ed.) Reduced-density-matrix mechanics: with applications to many-electron atoms and molecules, 1 edn., Chap 3. Wiley, Hoboken, pp 21–59

    Google Scholar 

  31. Mazziotti DA (2008) Parametrization of the two-electron reduced density matrix for its direct calculation without the many-electron wave function: Generalizations and applications. Phys Rev Lett 101:253002

    Article  Google Scholar 

  32. Mazziotti DA (2012) Two-electron reduced density matrix as the basic variable in many-electron quantum chemistry and physics. Chem Rev 112(8):244–262

    Article  CAS  Google Scholar 

  33. Morrell MM, Parr RG, Levy M (1975) Calculation of I.P. from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density. J Chem Phys 62(2):549–554

    Article  CAS  Google Scholar 

  34. Mulliken RS (1928) The assignment of quantum numbers for electrons in molecules. I. Phys Rev 32:186–222

    Article  CAS  Google Scholar 

  35. Ortiz JV (1999) Toward an exact one-electron picture of chemical bonding. Adv Quantum Chem 35:33–52

    Article  CAS  Google Scholar 

  36. Ortiz JV (2004) Brueckner orbitals, Dyson orbitals, and correlation potentials. Int J Quantum Chem 100(6):1131–1135

    Article  CAS  Google Scholar 

  37. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  38. Pernal K, Cioslowski J (2005) Ionization potentials from the extended Koopmans’ theorem applied to density matrix functional theory. Chem Phys Lett 412(1-3):71–75

    Article  CAS  Google Scholar 

  39. Piris M PNOFID, http://www.ehu.es/mario.piris/#Software

    Google Scholar 

  40. Piris M (1999) A generalized self-consistent-field procedure in the improved BCS theory. J Math Chem 25:47–54

    Article  CAS  Google Scholar 

  41. Piris M (2006) A new approach for the two-electron cumulant in natural orbital. Int J Quantum Chem 106:1093–1104

    Article  CAS  Google Scholar 

  42. Piris M (2007) Natural orbital functional theory. In: Mazziotti DA (ed.) Reduced-density-matrix mechanics: with applications to many-electron atoms and molecules, chap 14. Wiley, Hoboken, pp 387–427

    Google Scholar 

  43. Piris M (2012) A natural orbital functional based on an explicit approach of the two-electron cumulant. Int J Quantum Chem. doi: 10.1002/qua.24020

    Google Scholar 

  44. Piris M, Lopez X, Ruipérez F, Matxain JM, Ugalde JM (2011) A natural orbital functional for multiconfigurational states. J Chem Phys 134(16):164102

    Article  CAS  Google Scholar 

  45. Piris M, Lopez X, Ugalde JM (2007) Dispersion interactions within the Piris natural orbital functional theory: the helium dimer. J Chem Phys 126(21):214103

    Article  CAS  Google Scholar 

  46. Piris M, Matxain JM, Lopez X, Ugalde JM (2009) Spin conserving natural orbital functional theory. J Chem Phys 131: 021,102

    Article  CAS  Google Scholar 

  47. Piris M, Matxain JM, Lopez X, Ugalde JM (2010) Communication: The role of the positivity N-representability conditions in natural orbital functional theory. J Chem Phys 133:111101

    Article  CAS  Google Scholar 

  48. Piris M, Matxain JM, Lopez X, Ugalde JM (2010) Communications: accurate description of atoms and molecules by natural orbital functional theory. J Chem Phys 132:031103

    Article  CAS  Google Scholar 

  49. Piris M, Matxain JM, Lopez X, Ugalde JM (2012) The extended Koopmans’ theorem: vertical ionization potentials from natural orbital functional theory. J Chem Phys 136(17):174116

    Article  Google Scholar 

  50. Piris M, Montero LA, Cruz N (1997) The BCS approach to electron correlation in the density matrix formalism. J Chem Phys 107(1):180–187

    Article  CAS  Google Scholar 

  51. Piris M, Otto P (2003) One-particle density matrix functional for correlation in molecular systems. Int J Quantum Chem 94(6): 317–323

    Article  CAS  Google Scholar 

  52. Piris M, Otto P (2005) Natural orbital functional for correlation in polymers. Int J Quantum Chem 102(1):90–97

    Article  CAS  Google Scholar 

  53. Piris M, Ugalde JM (2009) Iterative diagonalization for orbital optimization in natural orbital functional theory. J Comput Chem 30:2078–2086

    Article  CAS  Google Scholar 

  54. Sand AM, Schwerdtfeger Ca, Mazziotti DA (2012) Strongly correlated barriers to rotation from parametric two-electron reduced-density-matrix methods in application to the isomerization of diazene. J Chem Phys 136(3):034112

    Article  Google Scholar 

  55. Smith DW, Day OW (1975) Extension of Koopmans theorem. I. Derivation. J Chem Phys 62(1):113–114

    Article  CAS  Google Scholar 

  56. Valone SM (1980) Consequences of extending 1 matrix energy functionals pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349

    Article  Google Scholar 

  57. Woon D, Dunning Jr. TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    CAS  Google Scholar 

  58. Wu W, Su P, Shaik S, Hiberty PC (2011) Classical valence bond approach by modern method. Chem Rev 111(11):7557–7593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Piris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piris, M., Matxain, J.M., Lopez, X., Ugalde, J.M. (2014). The one-electron picture in the Piris natural orbital functional 5 (PNOF5). In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_2

Download citation

Publish with us

Policies and ethics