Skip to main content

Advertisement

Log in

State-specific complete active space multireference Møller–Plesset perturbation approach for multireference situations: illustrating the bond breaking in hydrogen halides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Assessment of the complete active space-based state-specific multireference Møller–Plesset perturbation theory, SS-MRMPPT, has been performed on the ground states of HX (X = F, Cl, and Br) systems through the computation of potential energy surface (PES) and spectroscopic constants (such as equilibrium bond lengths, rotational constants, centrifugal distortion constants, vibrational frequencies, anharmonicity constants, and dissociation energies that are closely related to the shape and accuracy of the energy surfaces) extracted from the computed PES. The SS-MRMPPT (involves multiple amplitude sets to parametrize the exact wavefunction) approach isolates one of the several states provided by an effective Hamiltonian in an attempt to avert intruder states in size-extensive manner and hence it forms the basis of a robust approach to the electron correlation problem in cases where a multireference formalism is required. The absence of intruder problem makes SS-MRMPPT an interesting choice for the calculation of the dissociation energy surface(s). The performance of the method has been judged by comparing the results with calculations provided by current generation ab initio methods (multireference or single-reference methods) and we found, in general, a very good accordance between them which clearly demonstrates the usefulness of the SS-MRMPPT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Of course, the use of genuine multireference methods presents additional levels of complexity for the practitioners, when compared with the corresponding single-reference methods. The genuine multireference approaches often require a degree of subjective judgment from the user to render the calculations manageable and effective. The most obvious conceptual challenge is to choose a meaningful active space for describing a given chemical problem.

  2. Nondynamic correlation is associated with the strongly interacting reference determinants or configurations (via linear combination of the reference functions) while the dynamic one gives contributions to the wave function from the space orthogonal to that spanned by the reference functions, i.e., arising from the couplings between the model and outer spaces. Electronic structure methods capable of providing ‘chemical accuracy’ for ground and electronically excited states of molecules must include both dynamical and nondynamical correlation effects.

  3. Intruder problem is ubiquitous in studying potential energy surfaces leading to the formulation of molecules. In the multireference perturbation theory, intruder state problems (causing appearance of very small energy denominators in PT series and leading to spurious results of the entire PT calculations) are inevitable from the theoretical point of view. On the other hand, for multireference coupled cluster method based on the generalized Bloch equation, intruder problem is a consequence of the polynomial character of amplitude finding equations due to the exponential ansatz for the wave function. Not only that, nonlinear character of the Bloch equation also invite the existence of multiple solutions. Electronic structure methods capable of providing chemical accuracy for ground and excited states of atoms or molecules must be free from such effects. The intruder state problem can usually be corrected by widening the model space, but this inevitably leads to an increase of the computational effort. The main essence of the development of MR-based theory is to employ as small an active or reference space as possible. A well-established workaround for this problem is to focus on one single state of the effective Hamiltonian, leading to state-specific methodology. In most cases, the influence of intruder states becomes more important away from equilibrium regions and successful treatment of this issue will influence the accuracy of predicted energies.

  4. The energy and behavior of a molecule can be expressed as a function of the positions of the nuclei, that is, a potential energy surface and hence many aspects of chemistry can be reduced to questions about potential energy surfaces. A potential energy surface arises naturally when the Born–Oppenheimer approximation is invoked in the solution of the Schrödinger equation for a molecular system.

  5. Traditional multireference Rayleigh–Schrödinger perturbation theory is designed to describe a manifold of states. However, as the perturbation is switched on the relative disposition of these states and those states outside the reference space may change in such a way that convergence of the perturbation series is impaired or even destroyed.

  6. This ansatz was first introduced by Jeziorski and Monkhorst in the context of state-universal multireference coupled cluster.

  7. In SSMR formulation as, via the JM ansatz, every virtual function is generated from each model function by the action of a cluster operator of suitable excitation rank, there is an inherent redundancy of the number of cluster amplitudes vis-a-vis the corresponding configuration interaction coefficients accompanying the virtual function (needed to fully characterize the eigenfunction ψ). Using sufficiency conditions satisfying some important physical requirements (such as the theory be free from intruders and be rigorously size-extensive) Mukherjee et al. developed the SS-MRPT method [28, 29] by invoking a partition of H into H0 (a zeroth-order part) and V (a perturbation), and an order-by-order expansion of cluster operators, T μ of their SS-MRCC formalism [28]. Although sufficiency condition proposed by Mukherjee et al. is very useful, the underlying physical meaning still evades a clear understanding.

  8. In a unrelaxed (frozen) treatment, the updating of the nondynamical correlation as a result of mixing of the virtual functions is not done, assuming approximate additivity of the two effects and thus the methods of frozen coefficients variety (unrelaxed version) may suffer from the internal contraction of the wave function in the reference space. The relaxed (internally decontracted) treatment, on the other hand, dresses the effective operator in the active space, and the diagonalization of this operator automatically relaxes the coefficients of the model functions.

  9. A general difficulty of MRPT is the choice of the zeroth-order Hamiltonian. This is less straightforward than in the SR-based Møller–Plesset perturbation theory, since in the multireference case there is no one-electron Fock operator which is diagonal in the orbital basis. Thus, the zeroth-order Hamiltonian is in general nondiagonal, and a set of linear equations must be solved to determine the first-order wave function. Alternatively, the off-diagonal elements of the zeroth-order Hamiltonian can be neglected, but this may cause additional errors and removes orbital invariance properties.

  10. To the best of our knowledge, these spectroscopic results are the most complete and accurate ones to this day.

  11. See http://www.emsl.pnl.gov/forms/basisform.html.

  12. To assess the comparative performances of electronic structure methods from a perfectly quantitative standpoint, one needs to use the same basis, the same kind of orbitals, and the same geometry. Thereby, one can avoid, or at least attenuate, differences stemming out of the theoretical artifacts while comparing the results. A rigorous comparison of our results with other methods considered here, however, is difficult due to the use of different basis sets. For this reason, the quality of our comparison may not be appropriate. It should be noted that, in this article, our aim is not to look at our method only from the quantitative standpoint. Instead, we attempt to put forth the more qualitative aspect of the method in terms of its predictive power vis-a-vis other standard and established methods in routine use. In view of this, we have also collected the values provided by various methods with different basis and orbitals. To judge our results qualitatively, we also consider the results of various methods with different schemes just as a reference.

  13. Any ab initio calculation inevitably involves both the basis set error (i.e., the error associated with the model employed) and the error of the method itself (i.e., the intrinsic error due to the approximations involved in the method). Thus, when comparing with the experiment, the accuracy of a given post-Hartree–Fock method can only be properly assessed when we can estimate the complete-basis-set limit. This can be accomplished—at least partially—by observing the trend of the computed results while systematically enlarging the basis set.

  14. Although formally simple in conjunction with an explicit intruder-free nature, the BWPT2 method due to Hubač et al. [2325] is not rigorously size-extensive. In the first applications of BWPT2, no correction to the size-inextensivity was attempted. In a later modification, an attempt was made to expand the target energy in terms of the CASCI energy (by way of expanding the target energy in terms of an unperturbed Rayleigh–Schrödinger-like energy) to get rid of the inextensivity. This has the danger of bringing back the intruders and hence care then has to be exercised to bypass intruders.

  15. In this article, authors study the difference between the various direct perturbation theory and Pauli perturbation method for the HX (X = F,Cl, Br, and I) molecules in order to investigate the relative importance of relativistic effects, higher-order electron correlation effects, and remaining basis sets effects.

  16. To obtain the results at CBS limit, we have used the same scheme as done by Hirata et al. [68].

  17. The results reported in this paper provide very accurate and complete investigations on the molecular parameters of the \(X ^1\Upsigma^{+}\) HBr when compared with the previous theoretical estimations. Their results almost perfectly conform to the available experimental measurements.

  18. In this paper, Peterson et al. performed the D 0, R e , ω e and ω e x e calculations by the CCSD(T) method with a series of correlation-consistent basis sets in conjunction with small-core relativistic pseudopotentials, aug-cc-pVnZ-PP (n = 2, 3, 4, 5). In order to assess the impact of the pseudopotential approximation on the calculated properties, they also made the all-electron CCSD(T) Douglas–Kroll–Hess calculations using the correlation-consistent quintuple basis set augmented with diffused functions, aug-cc-pV5Z-DK.

  19. Also, it has not escaped our attention that to eliminate or considerably reduce the numerical instability of the cluster amplitudes equations of the SS-MRMPT approach, one can use Tikhonov regularization scheme [115], where replaces \(\frac{1}{c_\mu}\) in the coupling term of Eq. (2) by \(\frac{1}{{\widetilde c}_\mu}: \)

    $$ \frac{1}{{\widetilde c}_\mu}= \frac{c_\mu}{c_\mu^2+\tau^2} $$

    where τ is a parameter set by users and is a real quantity. It is evident that \(\frac{1}{{\widetilde c}_\mu}=\frac{1}{c_\mu}\) when c μ has a large value while \(\frac{1}{{\widetilde c}_\mu}=\frac{c_\mu}{\tau^2}\) for very small value of c μ. However, at present we have not incorporated this scheme in our code. We are now engaged in such an implementation which we intend to present in near future. It is worth mentioning at this juncture that the special care for the treatments of the amplitude equation in conjunction with very small value of the reference coefficients are not necessary for the unrelaxed description of the SS-MRMPT method (see [47, 48]).

References

  1. Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) (2005) In: Theory and Applications of Computational Chemistry: The First 40 Years. Elsevier, Amsterdam

  2. Shavitt I (1998) 94:3 and references therein

  3. Shavitt I, Bartlett RJ (2009) In: Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, Cambridge University Press, Cambridge

  4. Møller M, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  5. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem S 10:1

    Article  CAS  Google Scholar 

  6. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Chem Phys 94:5483

    Article  CAS  Google Scholar 

  7. Andersson K, Malmqvist PÅ, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  8. Gagliardia L, Roos B (2007) Chem Soc Rev 36:893 and references therein

  9. Hirao K (1992) Chem Phys Lett 1(90):374

    Article  Google Scholar 

  10. Hirao K (1992) Chem Phys Lett 196:397

    Article  CAS  Google Scholar 

  11. Nakao Y, Choe YK, Nakayama K, Hirao K (2002) Mol Phys 100:729

    Article  CAS  Google Scholar 

  12. Choe Y-K, Nakao Y, Hirao K (2001) J Chem Phys 115:621

    Article  CAS  Google Scholar 

  13. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  14. Hoffmann MR (1992) Chem Phys Lett 195:127

    Article  CAS  Google Scholar 

  15. Jiang W, Khait YG, Hoffmann MR (2009) J Phys Chem A 113:4374

    Article  CAS  Google Scholar 

  16. Huron B, Malrieu JP, Rancurel P (1973) J Chem Phys 58:5745

    Article  CAS  Google Scholar 

  17. Evangelisti S, Daudey JP, Malrieu JP (1983) Chem Phys 75:91

    Article  CAS  Google Scholar 

  18. Angeli C, Cimiraglia R, Persico M, Toniolo A (1997) Theor Chem Acc 98:57

    Article  CAS  Google Scholar 

  19. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) J Chem Phys 114:10252

    Article  CAS  Google Scholar 

  20. Angeli C, Borini S, Cimiraglia R (2004) Theor Chem Acc 111:352

    Article  CAS  Google Scholar 

  21. Angeli C, Pastore M, Cimiraglia R (2007) Theor Chem Acc 117:743

    Article  CAS  Google Scholar 

  22. Pastore M, Angeli C, Cimiraglia R (2007) Theor Chem Acc 118:35

    Article  CAS  Google Scholar 

  23. Hubač I, Mach P, Wilson S (2002) Mol Phys 100:859

    Article  CAS  Google Scholar 

  24. Papp P, Mach P, Hubač I, Wilson S (2007) Int J Quantum Chem 107:2622

    Article  CAS  Google Scholar 

  25. Papp P, Neogrády P, Mach P, Pittner J, Hubač I, Wilson S (2008) Mol Phys 57:106

    Google Scholar 

  26. Rolik Z, Szabados Á, Surján P R (2003) J Chem Phys 119:1922

    Article  CAS  Google Scholar 

  27. Szabados Á, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 122:114104

    Article  CAS  Google Scholar 

  28. Mahapatra US, Datta B, Mukherjee D (1999) J Chem Phys 110:6171

    Article  CAS  Google Scholar 

  29. Mahapatra US, Datta B, Mukherjee D (1999) J Phys Chem 103:1822

    CAS  Google Scholar 

  30. Chen F, Davidson ER, Iwata S (2002) Int J Quantum Chem 86:256

    Article  CAS  Google Scholar 

  31. Angeli C, Cimiraglia R, Malrieu J-P (2006) Theor Chem Acc 116:434

    Article  CAS  Google Scholar 

  32. Chaudhuri RK, Freed KF, Chattopadhyay S, Mahapatra US (2008) J Chem Phys 128:144304

    Article  CAS  Google Scholar 

  33. Chattopadhyay S, Chaudhuri RK, Mahapatra US (2008) J Chem Phys 129:244108

    Article  CAS  Google Scholar 

  34. Chattopadhyay S, Chaudhuri RK, Freed KF (2011) Phys Chem Chem Phys 13:7514

    Article  CAS  Google Scholar 

  35. Shahi ARM, Cramer CJ, Gagliardi L (2009) Phys Chem Chem Phys 11:10964

    Article  CAS  Google Scholar 

  36. Granovsky AA (2011) J Chem Phys 134:214113

    Article  CAS  Google Scholar 

  37. Roskop L, Gordon MS (2011) J Chem Phys 135:044101

    Article  CAS  Google Scholar 

  38. Pahari D, Chattopadhyay S, Das S, Mukherjee D, Mahapatra US (2005) . In: Dytkstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years, Elsevier, Amsterdam, p 581

    Chapter  Google Scholar 

  39. Mahapatra US, Chattopadhyay S, Chaudhuri RK (2008) J Chem Phys 129:024108

    Article  CAS  Google Scholar 

  40. Mahapatra US, Chattopadhyay S, Chaudhuri RK (2009) J Chem Phys 130:014101

    Article  CAS  Google Scholar 

  41. Chattopadhyay S, Mahapatra US, Chaudhuri RK (2009) J Phys Chem A 113:5972

    Article  CAS  Google Scholar 

  42. Mahapatra US, Chattopadhyay S, Chaudhuri RK (2010) J Chem Theory Comput 6:662

    Article  CAS  Google Scholar 

  43. Chattopadhyay S, Mahapatra US, Chaudhuri RK (2010) Chem Phys Lett 488:229

    Article  CAS  Google Scholar 

  44. Mahapatra US, Chattopadhyay S, Chaudhuri RK (2010) J Phys Chem A 114:3668

    Article  CAS  Google Scholar 

  45. Evangelista FA, Simmonett AC, Schaefer HF III, Mukherjee D, Allen WD (2009) Phys Chem Chem Phys 11:4728

    Article  CAS  Google Scholar 

  46. Hoffmann MR, Datta D, Das S, Mukherjee D, Szabados Á, Rolik Z, Surján PR (2009) J Chem Phys 131:204104

    Article  CAS  Google Scholar 

  47. Mao S, Cheng L, Liu W, Mukherjee D (2012) J Chem Phys 136:024106

    Article  CAS  Google Scholar 

  48. Mao S, Cheng L, Liu W, Mukherjee D (2012) J Chem Phys 136:024105

    Article  CAS  Google Scholar 

  49. Schucan TH, Weidenmüller HA (1973) Ann Phys (NY) 76:483

    Article  Google Scholar 

  50. Finley JP, Freed KF (1995) J Chem Phys 102:1306

    Article  CAS  Google Scholar 

  51. Kowalski K, Piecuch P (2000) Phys Rev A 61:052506

    Article  Google Scholar 

  52. Van Dam HJJ, Van Lenthe JH, Ruttnik PJA (1999) Int J Quantum Chem 72:549

    Article  CAS  Google Scholar 

  53. Witek HA, Nakano H, Hirao K (2003) J Chem Phys 118:8197

    Article  CAS  Google Scholar 

  54. Rintelman JM, Adamovic I, Varganov S, Gordon MS (2005) J Chem Phys 122:044105

    Article  CAS  Google Scholar 

  55. Azizi Z, Roos BO, Veryazova V (2006) Phys Chem Chem Phys 8:2727

    Article  CAS  Google Scholar 

  56. Chaudhuri RK, Freed KF, Hose G, Piecuch P, Kowalski K, Wloch M, Chattopadhyay S, Mukherjee D, Rolik Z, Szabados A, Toth G, Surjan PR (2005) J Chem Phys 122:134105

    Article  CAS  Google Scholar 

  57. Zaitsevskii A, Malrieu JP (1995) Chem Phys Lett 233:597

    Article  CAS  Google Scholar 

  58. Rolik Z, Szabados Á (2009) Int J Quantum Chem 109:2554

    Article  CAS  Google Scholar 

  59. Zaitsevskii A, Malrieu JP (1997) Theor Chem Acc 96:269

    Article  CAS  Google Scholar 

  60. Jeziorski B, Monkhorst HJ (1981) Phys Rev A 24:1668

    Article  CAS  Google Scholar 

  61. Jeziorski B (2010) Mol Phys 108:3043

    Article  CAS  Google Scholar 

  62. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299

    Article  CAS  Google Scholar 

  63. Shiozaki T, Győrffy W, Celani P, Werner H-J (2011) J Chem Phys 135:081106

    Article  CAS  Google Scholar 

  64. Camacho C, Cimiraglia R, Witek HA (2010) Phys Chem Chem Phys 12:5058

    Article  CAS  Google Scholar 

  65. Camacho C, Witek HA, Cimiraglia R (2010) J Chem Phys 132:244306

    Article  CAS  Google Scholar 

  66. Olsen J, Fülscher M P (2000) Chem Phys Lett 326:225

    Article  CAS  Google Scholar 

  67. van Dam HJJ, van Lenthe JH (1997) Mol Phys 90:1007

    Article  Google Scholar 

  68. Hirata S, Yanai T, de Jong WA, Nakajima T, Hirao K (2004) J Chem Phys 120:3297

    Article  CAS  Google Scholar 

  69. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  70. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  71. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  72. Feller D (1996) J Comput Chem 17:1571

    CAS  Google Scholar 

  73. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045

    Article  CAS  Google Scholar 

  74. Huber KP, Herzberg G (1979) In: Constants of Diatomic Molecules. Van Nostrand Reinhold, New York

  75. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  76. Gordon MS, Schmidt MW (2005) . In: Dykstra CE, Kim KS, Frenking G, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years of quantum chemistry, Elsevier, Amsterdam, pp 1167–1189

    Google Scholar 

  77. Dunham JL (1932) Phys Rev 41:721

    Article  CAS  Google Scholar 

  78. Martin JML (1998) Chem Phys Lett 292:411

    Article  CAS  Google Scholar 

  79. Müller H, Franke R, Vogtner S, Jaquet R, Kutzelnigg W (1998) Theor Chem Acc 100:85

    Article  Google Scholar 

  80. Li X, Paldus J (1998) J Chem Phys 108:637

    Article  CAS  Google Scholar 

  81. Li X, Paldus J (2000) Int J Quantum Chem 80:743

    Article  CAS  Google Scholar 

  82. Li X, Paldus J (2006) J Chem Phys 124:174101

    Article  CAS  Google Scholar 

  83. Visscher L, Styszyński J, Nieuwpoort WC (1996) J Chem Phys 105:1987

    Article  CAS  Google Scholar 

  84. Styszyński (2000) J Chem Phys Lett 317:351

    Article  Google Scholar 

  85. Chaudhuri RK, Freed KF, Abrash SA, Potts DM (2001) J Mol Struct (Theochem) 547:83

    Article  CAS  Google Scholar 

  86. Dutta A, Sherrill CD (2003) J Chem Phys 118:1610

    Article  CAS  Google Scholar 

  87. Kowalski K, Piecuch P (2004) J Chem Phys 120:1715

    Article  CAS  Google Scholar 

  88. Paap P, Mach P, Pittner J, Wilson S, Hubač I, Wilson S (2006) Mol Phys 104:2367

    Article  CAS  Google Scholar 

  89. Engels-Putzka A, Hanrath M (2009) J Mol Struct (Theochem) 902:59

    Article  CAS  Google Scholar 

  90. Hirata S, Bartlett RJ (2000) Chem Phys Lett 321:216

    Article  CAS  Google Scholar 

  91. Shiozaki T, Valeev EF, Hirata S (2009) J Chem Phys 131:044118

    Article  CAS  Google Scholar 

  92. Hennum AC, Halkier A, Klopper W (2001) J Mol Struct 599:153

    Article  CAS  Google Scholar 

  93. Kobayashi M, Szabados Á, Nakai H, Surján PR (2010) J Chem Theory Comput 6(7):2024

    Article  CAS  Google Scholar 

  94. Klimenko TA, Ivanov VV, Lyakh DI, Adamowicz L (2010) Chem Phys Lett 493:173

    Article  CAS  Google Scholar 

  95. Das S, Kállay M, Mukherjee D (2011) Chem Phys 392:83

    Article  CAS  Google Scholar 

  96. Karton A, Martin JML (2010) J Phys Chem 133:144102

    Article  CAS  Google Scholar 

  97. Adams GF, Chabalowski CF (1994) J Phys Chem 98:5878

    Article  CAS  Google Scholar 

  98. Shen J, Fang T, Hua W, Li S (2008) J Phys Chem A 112:4703

    Article  CAS  Google Scholar 

  99. Deskevich MP, Hayes MY, Takahashi K, Skodje RT, Nesbitt DJ (2006) J Chem Phys 124:224303

    Article  CAS  Google Scholar 

  100. Piecuch P, Hirata S, Kowalski K, Fan P-D, Windus TL (2006) Int J Quantum Chem 106:79

    Article  CAS  Google Scholar 

  101. Herzberg G (1950) In: Molecular spectra and molecular structure. I. Diatomic molecules, 2nd edn. Van Nostrand Reinhold, New York

  102. Michel M, Korolkovab MV, Weitzel K-M (2002) Phys Chem Chem Phys 4:4083

    Article  CAS  Google Scholar 

  103. Woon DE, Dunning TH (1993) J Chem Phys 99:1914

    Article  CAS  Google Scholar 

  104. Kellö V, Sadlej AJ (1990) J Chem Phys 93:8122

    Article  Google Scholar 

  105. Chapman DA, Balasubramanian K, Lin SH (1987) Chem Phys 118:333

    Article  CAS  Google Scholar 

  106. Fleig T, Sørensen LK, Olsen J (2007) Theor Chem Acc 118:347

    Article  CAS  Google Scholar 

  107. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  108. Shi D, Sun J, Chen Z, Liu Y, Zhu Z (2009) J Mol Struct (Theochem) 913:85

    Article  CAS  Google Scholar 

  109. Odashima H (2006) J Mol Spectrosc 240:69

    Article  CAS  Google Scholar 

  110. Yencha AJ, Cormack AJ, Donovan RJ, Lawley KP, Hopkirk A, King GC (1998) Chem Phys 238:133

    Article  CAS  Google Scholar 

  111. Lee SY, Lee YS (1991) Chem Phys Lett 187:302

    Article  Google Scholar 

  112. Yockel S, Wilson AK (2005) J Chem Phys 122:174310

    Article  CAS  Google Scholar 

  113. Hanrath M (2005) J Chem Phys 123:84102

    Article  CAS  Google Scholar 

  114. Engels-Putzka A, Hanrath M (2009) Mol. Phys. 107:143

    Article  CAS  Google Scholar 

  115. Das S, Mukherjee D, Kállay M (2010) J Chem Phys 132:074103

    Article  CAS  Google Scholar 

  116. Szabados A (2011) J Chem Phys 134:174113

    Article  CAS  Google Scholar 

  117. Hanrath M (2005) J Chem Phys 123:084102

    Article  CAS  Google Scholar 

  118. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803

    Article  CAS  Google Scholar 

  119. Werner H-J (1996) Mol Phys 89:645

    Article  CAS  Google Scholar 

  120. Roos BO (1987) Adv Chem Phys 69:399

    Article  CAS  Google Scholar 

  121. Celani P, Werner H-J (2000) J Chem Phys 112:5546

    Article  CAS  Google Scholar 

  122. Yanai T, Chan GK-L (2006) J Chem Phys 124:194106

    Article  CAS  Google Scholar 

  123. Evangelista FA, Gauss J (2010) J Chem Phys 133:044101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Professor Shankar Prasad Bhattacharyya, a great teacher, at the occasion of his reaching sixty-five. We have all benefited immensely from our interactions over the years with him. We thank Dr. Debi Banerjee for critical reading of the manuscript. This work has been funded by the Department of Science and Technology of India [Grant No.SR/S1/PC-61/2009]. S.C. acknowledges the infrastructural facility developed in his department through UGC-SAP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Mahapatra, U.S. & Chaudhuri, R.K. State-specific complete active space multireference Møller–Plesset perturbation approach for multireference situations: illustrating the bond breaking in hydrogen halides. Theor Chem Acc 131, 1213 (2012). https://doi.org/10.1007/s00214-012-1213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1213-z

Keywords

Navigation