Skip to main content
Log in

Reference spaces for multireference coupled-cluster theory: the challenge of the CoH molecule

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In multireference calculations on transition metal compounds, large active spaces including a second set of d orbitals are often used. However, with the increase in the system size and the complexity of the method, such calculations quickly become impractical. In this work, we looked for an inner valence active space for atomic cobalt and its hydride that correctly describes the transition energies among states with distinct configurations. Potential energy curves for the CoH molecule were obtained using a fixed reference space, where the orbitals are optimised only for the isolated atoms, avoiding undesirable sudden variations of the active orbitals. The calculations made use of the multireference configuration interaction (MRCI) and coupled-cluster (MRCC) theories. The accuracy of these calculations is carefully analysed, and we show that MRCC results are accurate, although not all electronic states are quantitatively described at the MRCI level. We conclude that the use of the fixed reference space is a viable approach to reduce the computational cost when large active spaces are prohibitive. Finally, a careful comparison of the present results with experimental values is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M (2018) Multireference approaches for excited states of molecules. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00244

    Article  PubMed  Google Scholar 

  2. Hay PJ (1977) Gaussian basis sets for molecular calculation. The representation of 3\(d\) orbitals in transition-metal atoms. J Chem Phys. https://doi.org/10.1063/1.433731

    Article  Google Scholar 

  3. Botch BH, Dunning TH Jr, Harrison JF (1981) Valence correlation in the \(s^2d^n\), \(sd^{n+1}\), and \(d^{n+2}\) states of the first-row transition metal atoms. J Chem Phys. https://doi.org/10.1063/1.442456

    Article  Google Scholar 

  4. Bauschlicher CW Jr, Siegbahn P, Pettersson LGM (1988) The atomic states of nickel. Theor Chim Acta. https://doi.org/10.1007/BF00528018

    Article  Google Scholar 

  5. Andersson K, Roos BO (1992) Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory. Chem Phys Lett. https://doi.org/10.1016/0009-2614(92)85581-T

    Article  Google Scholar 

  6. Balabanov NB, Peterson KA (2006) Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3\(d\) transition metal atoms: coupled cluster and multireference methods. J Chem Phys. https://doi.org/10.1063/1.2335444

    Article  PubMed  Google Scholar 

  7. Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ (2012) Multireference nature of chemistry: the coupled-cluster view. Chem Rev. https://doi.org/10.1021/cr2001417

    Article  PubMed  Google Scholar 

  8. Köhn A, Hanauer M, Mück LA, Jagau T-C, Gauss J (2012) State-specific multireference coupled-cluster theory. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1120

    Article  Google Scholar 

  9. Aoto YA, Köhn A (2016) Revisiting the \(\text{ F }+\text{ HCl }\rightarrow \text{ HF }+\text{ Cl }\) reaction using a multireference coupled-cluster method. Phys Chem Chem Phys. https://doi.org/10.1039/C6CP05782A

    Article  PubMed  Google Scholar 

  10. Sakellaris CN, Mavridis A (2012) First principles study of cobalt hydride, CoH, and its ions \(\text{ CoH }^+\) and \(\text{ CoH }^-\). J Chem Phys. https://doi.org/10.1063/1.4734595

    Article  PubMed  Google Scholar 

  11. Kramida A (2018) Atomic energy levels and spectra bibliographic database (version 2.0). Natl Inst Stand Technol. https://doi.org/10.18434/T40K53

    Article  Google Scholar 

  12. Langhoff SR, Davidson ER (1974) Configuration interaction calculations on the nitrogen molecule. Int J Quantum Chem. https://doi.org/10.1002/qua.560080106

    Article  Google Scholar 

  13. Werner H-J, Kállay M, Gauss J (2008) The barrier height of the F\(+\text{ H }_2\) reaction revisited: coupled-cluster and multireference configuration-interaction benchmark calculations. J Chem Phys. https://doi.org/10.1063/1.2822905

    Article  PubMed  Google Scholar 

  14. Hanauer M, Köhn A (2012) Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory. J Chem Phys. https://doi.org/10.1063/1.4718700

    Article  PubMed  Google Scholar 

  15. Deskevich MP, Nesbitt DJ, Werner H-J (2004) Dynamically weighted multiconfiguration self-consistent field: multistate calculations for F\(+\text{ H }_2\text{ O }\rightarrow \text{ HF }+\text{ OH }\). J Chem Phys. https://doi.org/10.1063/1.1667468

    Article  PubMed  Google Scholar 

  16. Sayfutyarova ER, Sun Q, Chan GK-L, Knizia G (2017) Automated construction of molecular active spaces from atomic valence orbitals. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b00128

    Article  PubMed  Google Scholar 

  17. Evangelista FA, Gauss J (2011) An orbital-invariant internally contracted multireference coupled cluster approach. J Chem Phys. https://doi.org/10.1063/1.3559149

    Article  PubMed  Google Scholar 

  18. Gordon IE, Le Roy RJ, Bernath PF (2006) Near infrared emission spectra of CoH and CoD. J Mol Spectrosc. https://doi.org/10.1016/j.jms.2006.02.011

    Article  Google Scholar 

  19. Varberg TD, Hill EJ, Field RW (1989) Laser spectroscopy of CoH: spin–orbit splitting of the ground state. J Mol Spectrosc. https://doi.org/10.1016/0022-2852(89)90023-4

    Article  Google Scholar 

  20. Miller AES, Feigerle CS, Lineberger WC (1987) Laser photoelectron spectroscopy of CrH–, CoH–, and NiH–: periodic trends in the electronic structure of the transition-metal hydrides. J Chem Phys. https://doi.org/10.1063/1.453214

    Article  Google Scholar 

  21. Barnes M, Merer AJ, Metha GF (1995) Rotational and hyperfine analysis of the \(A^{\prime 3}\Phi _4-X^3\Phi _4\) transitions of CoH and CoD. J Mol Spectrosc. https://doi.org/10.1006/jmsp.1995.1222

    Article  Google Scholar 

  22. Aoto YA, de Lima Batista AP, Köhn A, de Oliveira-Filho AGS (2017) How to arrive at accurate benchmark values for transition metal compounds: computation of experiment? J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b00688

    Article  PubMed  Google Scholar 

  23. Cheng L, Gauss J, Ruscic B, Armentrout PB, Stanton JF (2017) Bond dissociation energies for diatomic molecules containing 3d transition metals: benchmark scalar-relativistic coupled-cluster calculations for 20 molecules. J Chem Theory. https://doi.org/10.1021/acs.jctc.6b00970

    Article  Google Scholar 

  24. Tomonari M, Okuda R, Nagashima U, Tanaka K, Hirano T (2007) Ab initio calculation of the electronic structures of the \(^3\Phi\) ground and \(^5\Phi\) excited states of CoH. J Chem Phys. https://doi.org/10.1063/1.2711193

    Article  PubMed  Google Scholar 

  25. Shee J, Rudshteyn B, Arthur EJ, Zhang S, Reichman DR, Friesner RA (2019) On achieving high accuracy in quantum chemical calculations of 3\(d\) transition metal-containing systems: a comparison of auxiliary-field quantum monte carlo with coupled cluster, density functional theory, and experiment for diatomic molecules. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.9b00083

    Article  PubMed  Google Scholar 

  26. Wang H, Zhuang X, Steimle TC (2009) The permanent electric dipole moments of cobalt monofluoride, CoF, and monohydride, CoH. J Chem Phys. https://doi.org/10.1063/1.3226672

    Article  PubMed  PubMed Central  Google Scholar 

  27. Banerjee A, Simons J (1981) The coupled-cluster method with a multiconfiguration reference state. Int J Quantum Chem. https://doi.org/10.1002/qua.560190203

    Article  Google Scholar 

  28. Hanauer M, Köhn A (2011) Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J Chem Phys. https://doi.org/10.1063/1.3592786

    Article  PubMed  Google Scholar 

  29. Wolf A, Reiher M, Hess BA (2002) The generalized Douglas–Kroll transformation. J Chem Phys. https://doi.org/10.1063/1.1515314

    Article  Google Scholar 

  30. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys. https://doi.org/10.1063/1.1768160

    Article  PubMed  Google Scholar 

  31. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order. J Chem Phys. https://doi.org/10.1063/1.1818681

    Article  PubMed  Google Scholar 

  32. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. https://doi.org/10.1063/1.456153

    Article  Google Scholar 

  33. de Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis set. J Chem Phys. https://doi.org/10.1063/1.1329891

    Article  Google Scholar 

  34. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3\(d\) elements Sc–Zn. J Chem Phys. https://doi.org/10.1063/1.1998907

    Article  PubMed  Google Scholar 

  35. Berning A, Schweizer M, Werner H-J, Knowles PJ, Palmieri P (2000) Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol Phys. https://doi.org/10.1080/00268970009483386

    Article  Google Scholar 

  36. Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chem Phys Lett. https://doi.org/10.1016/S0009-2614(99)00179-7

    Article  Google Scholar 

  37. Werner H-J, Knowles PJ (1988) An efficient internally contracted multiconfiguration-reference configuration interaction method. J Chem Phys. https://doi.org/10.1063/1.455556

    Article  Google Scholar 

  38. Knowles PJ, Werner H-J (1988) An efficient method for the evaluation of coupling coefficients in configuration interaction calculation. Chem Phys Lett. https://doi.org/10.1016/0009-2614(88)87412-8

    Article  Google Scholar 

  39. Knowles PJ, Werner H-J (1992) Internally contracted multiconfiguration-reference configuration interaction calculations for excited states. Theor Chim Acta. https://doi.org/10.1007/BF01117405

    Article  Google Scholar 

  40. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, et al. MOLPRO, version 2019 a package of ab initio programs. see http://www.molpro.net

  41. Samanta PK, Köhn A (2018) First-order properties from internally contracted multireference coupled-cluster theory with particular focus on hyperfine coupling tensors. J Chem Phys. https://doi.org/10.1063/1.5040587

    Article  PubMed  Google Scholar 

  42. Werner H-J, Knowles PJ (1985) A second order multiconfiguration SCF procedure with optimum convergence. J Chem Phys. https://doi.org/10.1063/1.448627

    Article  Google Scholar 

  43. Knowles PJ, Werner H-J (1985) An efficient second-order MC SCF method for long configuration expansios. Chem Phys Lett. https://doi.org/10.1016/0009-2614(85)80025-7

    Article  Google Scholar 

Download references

Acknowledgements

We are very thankful to Andreas Köhn for the release of the GeCCo programme and to Pradipta Kumar Samanta for the assistance on the calculations of icMRCC dipole moments. Y.A.A. is grateful to Márcio Fabiano da Silva for the kind support. This research has been supported by Grants #2017/21199-0, #2018/04617-6 and #2018/14629-1, São Paulo Research Foundation (FAPESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Alexandre Aoto.

Additional information

This work is dedicated to Professor Fernando Rei Ornellas on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 141 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, M.M.F., Aoto, Y.A. Reference spaces for multireference coupled-cluster theory: the challenge of the CoH molecule. Theor Chem Acc 139, 71 (2020). https://doi.org/10.1007/s00214-020-2584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2584-1

Keywords

Navigation