Skip to main content
Log in

The DFT investigations of the electron injection in hydrazone-based sensitizers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum chemical calculations were carried out by using density functional theory and time-dependant density functional theory at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) level of theories. The absorption spectra have been computed with and without solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling constant, we have shed light on the nature of different sensitizers. The coplanarity between the benzene near anchoring group having LUMO and the bridge (N–N) is broken in System6 and System7 that would hamper the recombination process. The electron injection of System2–System10 is superior to System1. The highest electronic coupling constant has been observed for System6 that followed the System7 and System8. The light-harvesting efficiency of all the sensitizers enlarged in acetonitrile and ethanol. The long-range-corrected functional (LC-BLYP), Coulomb-attenuating method (CAM-B3LYP), and BH and HLYP functional underestimate the excitation energies while B3LYP is good to reproduce the experimental data. Moreover, we have investigated the effect of cyanoacetic acid as anchoring group on the electron injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fabregat-Santiago F, Garcia-Canadas J, Palomares E, Clifford JN, Haque SA, Durrant JR, Garcia-Belmonte G, Bisquert J (2004) The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J Appl Phys 96:6903–6907

    Article  CAS  Google Scholar 

  2. Figgemeier E, Hagfeldt A (2004) Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses. Int J Photoenergy 6:127–140

    Article  CAS  Google Scholar 

  3. Furube A, Katoh R, Yoshihara T, Hara K, Murata S, Arakawa H, Tachiya M (2004) Ultrafast direct and indirect electron-injection processes in a photoexcited dye-sensitized nanocrystalline zinc oxide film: the importance of exciplex intermediates at the surface. J Phys Chem B 108:12583–12592

    Article  CAS  Google Scholar 

  4. Hongwei H, Xingzhong Z, Jian L (2005) Enhancement in photoelectric conversion properties of the dye-sensitized nanocrystalline solar cells based on the hybrid TiO2 electrode. J Electrochem Soc 152:A164–A166

    Article  Google Scholar 

  5. Kim JH, Kang M-S, Kim YJ, Won J, Park N-G, Kang YS (2004) Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chem Commun 1662–1663

  6. Miyasaka T, Kijitori Y (2004) Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers. J Electrochem Soc 151:A1767–A1773

    Article  CAS  Google Scholar 

  7. O’Reagan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  8. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  9. Grätzel M (2004) Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”. J Photochem Photobiol, A 168:235

    Article  Google Scholar 

  10. Nazeeruddin MK, Kay A, Rodicio L, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  11. Nazeeruddin MK, Pe′chy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  12. Chen C-Y, Wu S-J, Li J-Y, Wu C-G, Chen J-G, Ho K-C (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19:3888–3891

    Article  CAS  Google Scholar 

  13. Chen C-Y, Chen J-G, Wu S-J, Li J-Y, Wu C-G, Ho K-C (2008) Multifunctionalized ruthenium-based super sensitizers for highly efficient dye-sensitized solar cells. Angew Chem Int Ed 47:7342–7345

    Article  CAS  Google Scholar 

  14. Ito S, Zakeeruddin M, Hummphrey-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pe′chy P, Takata M, Miura H, Uchida S, Gratzel M (2006) High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

  15. Choi H, Baik C, Kang SO, Ko J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem Int Ed 47:327–330

    Article  CAS  Google Scholar 

  16. Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem Commun 2198–2200

  17. Wang Z-S, Li F-Y, Huang C-H (2001) Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid. J Phys Chem B 105:9210–9217

    Article  CAS  Google Scholar 

  18. Thomas KRJ, Lin JT, Hsu Y-C, Ho K-C (2005) Organic dyes containing thienylfluorene conjugation for solar cells. Chem Commun 4098–4100

  19. Tian H, Yang X, Chen R, Pan Y, Li L, Hagfeldt A, Sun L (2007) Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem Commun 3741–3743

  20. Li S-L, Jiang K-J, Shao K-F, Yang L-M (2006) Novel organic dyes for efficient dye-sensitized solar cells. Chem Commun 2792–2794

  21. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid. J Phys Chem C 111:7224–7230

    Article  CAS  Google Scholar 

  22. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 5194–5196

  23. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27:783–785

    Article  CAS  Google Scholar 

  24. Mishra A, Fischer MKR, Bauerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  25. De Angelis F, Fantacci S, Selloni A (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] in water solution: influence of the pH. Chem Phys Lett 389:204–208

    Article  Google Scholar 

  26. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COO−-2,2′-bpy)2(X)2]4− (X = NCS, Cl) dyes in water solution. Chem Phys Lett 415:115–120

    Article  Google Scholar 

  27. Xu Y, Chen WK, Cao MJ, Liu SH, Li JQ, Philippopoulos AI, Falaras P (2006) A TD-DFT study on the electronic spectrum of Ru(II)L2 [L = bis(5′-methyl-2,2′-bipyridine-6-carboxylato)] in the gas phase and DMF solution. Chem Phys 330:204–211

    Article  CAS  Google Scholar 

  28. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Péchy P, Takata M, Miura H, Uchida S, Grätzel M (2006) High-efficiency organic-dye- sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

  29. De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7:3189–3195

    Article  Google Scholar 

  30. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129:14156–14157

    Article  Google Scholar 

  31. De Angelis F, Fntacci S, Selloni A (2008) Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19:424002–424009

    Article  Google Scholar 

  32. Di Censo D, Fantacci S, De Angelis F, Klein C, Evans N, Kalyanasundaram K, Bolink HJ, Grätzel M, Nazeeruddin MK (2008) Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. Inorg Chem 47:980–989

    Article  Google Scholar 

  33. Kurashige Y, Nakajima T, Kurashige S, Hirao K, Nishikitani Y (2007) Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells. J Phys Chem A 111:5544–5548

    Article  CAS  Google Scholar 

  34. Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10:5121–5127

    Article  CAS  Google Scholar 

  35. Satoh N, Cho JS, Higuchi M, Yamamoto K (2003) Novel triarylamine dendrimers as a hole-transport material with a controlled metal-assembling function. J Am Chem Soc 125:8104–8105

    Article  CAS  Google Scholar 

  36. Satoh N, Nakashima T, Yamamoto K (2005) Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. J Am Chem Soc 127:13030–13038

    Article  CAS  Google Scholar 

  37. Wang Q, Zakeeruddin SM, Cremer J, Bäuerle P, Humphry-Baker R, Gratzel M (2005) Cross surface ambipolar charge percolation in molecular triads on mesoscopic oxide films. J Am Chem Soc 127:5706–5713

    Article  CAS  Google Scholar 

  38. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochimica Acta Part A. doi:10.1016/j.saa.2012.01.016

    Google Scholar 

  39. Al-Sehemi AG, Irfan A (2012) Dye-Sensitized nanocrystalline TiO2 solar cell: toward high sun light to electricity conversion (submitted)

  40. Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J Chem Phys 131:244119–244123

    Article  Google Scholar 

  41. Wong BM, Piacenza M, Sala FD (2009) Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory. Phys Chem Chem Phys 11:4498–4508

    Article  CAS  Google Scholar 

  42. Wong BM, Cordaro JG (2008) Coumarin dyes for dye-sensitized solar cells: a long-range-corrected density functional study. J Chem Phys 129:214703–214710

    Article  Google Scholar 

  43. Lange AW, Rohrdanz MA, Herbert JM (2008) Charge-transfer excited states in a π-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory. J Phys Chem B 112:6304–6308

    Article  CAS  Google Scholar 

  44. Rohrdanz MA, Herbert JM (2008) Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J Chem Phys 129:034107–034115

    Article  Google Scholar 

  45. Toulouse J, Colonna F, Savin A (2005) Short-range exchange and correlation energy density functionals: beyond the local-density approximation. J Chem Phys 122:014110–014119

    Article  Google Scholar 

  46. Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9:2932–2941

    Article  CAS  Google Scholar 

  47. Preat J (2010) Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: TDDFT insights for triphenylamine dyes. J Phys Chem C 114:16716–16725

    Article  CAS  Google Scholar 

  48. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: Triphenylamine derivatives. J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  49. Magyar RJ, Tretiak S (2007) Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J Chem Theory Comput 3:976–987

    Article  CAS  Google Scholar 

  50. Irfan A, Al-Sehemi AG (2012) Donor-bridge-acceptor effect on the electron injection in triphenylamine based sensitizers: density functional theory investigations (submitted)

  51. Irfan A, Al-Sehemi AG (2012) Quantum chemical investigations of the electron injection in triphenylamine based sensitizers (submitted)

  52. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

    Article  Google Scholar 

  53. Bertolino CA, Ferrari AM, Barolo C, Viscardi G, Caputo S, Coluccia G (2006) Solvent effect on indocyanine dyes: a computational approach. Chem Phys 330:52–59

    Article  CAS  Google Scholar 

  54. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J Chem Phys 126:144105

    Article  Google Scholar 

  55. Guillaumont D, Nakamura S (2000) Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dyes Pigment 46:85–92

    Article  CAS  Google Scholar 

  56. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  58. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  59. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  60. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  61. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) A DFT study of the optical properties of substituted Zn(II)TPP complexes. J Mol Struct THEOCHEM 759:17–24

    Article  CAS  Google Scholar 

  62. Cleland DM, Gordon KC, Officer DL, Wagner P, Walsh PJ (2009) Tuning the optical properties of ZnTPP using carbonyl ring fusion. Spectrochimica Acta Part A 74:931–935

    Article  Google Scholar 

  63. Zhang CR, Liang WZ, Chen HS, Chen YH, Wei ZQ, Wu YZ (2008) Theoretical studies on the geometrical and electronic structures of N-methyle-3,4-fulleropyrrolidine. J Mol Struct THEOCHEM 862:98–104

    Article  CAS  Google Scholar 

  64. Sun J, Song J, Zhao Y, Liang WZ (2007) Real-time propagation of the reduced one-electron density matrix in atom-centered Gaussian orbitals: application to absorption spectra of silicon clusters. J Chem Phys 127:234107–234113

    Article  Google Scholar 

  65. Matthews D, Infelta P, Grätzel M (1996) Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Sol Energy Mater Sol Cells 44:119–155

    Article  CAS  Google Scholar 

  66. Frisch MJ, et al. (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

  67. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Google Scholar 

  68. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quantum Chem 32:227–261

    Article  Google Scholar 

  69. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  70. Preat J, Jacquemin D, Perpete E (2010) Design of new triphenylamine-sensitized solar cells: a theoretical approach. Environ Sci Technol 44:5666–5671

    Article  CAS  Google Scholar 

  71. Preat J (2010) Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: TDDFT insights for triphenylamine dyes. Sol Energy Mater Sol Cells 114:16716–16725

    CAS  Google Scholar 

  72. Pourtois G, Beljonne J, Ratner MA, Bredas JL (2002) Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: a quantum-chemical insight. J Am Chem Soc 124:4436–4447

    Article  CAS  Google Scholar 

  73. Hsu C (2009) The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res 42:509–518

    Article  CAS  Google Scholar 

  74. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  75. Asbury JB, Wang YQ, Hao E, Ghosh H, Lian T (2001) Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  76. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  77. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  78. Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  79. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic, San Diego

    Google Scholar 

  80. Cassida M (1995) Recent advances in density functional methods: time dependent density functional response theory for molecules; DP Chong, Singapore

  81. Harris DC, Bertolucci MD (1998) Symmetry and spectroscopy. Dover, New York

    Google Scholar 

  82. Liu D, Fessenden RW, Hug GL, Kamat PV (1997) Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO2 nanocrystallites with cresyl violet aggregates. J Phys Chem B 101:2583–2590

    Article  CAS  Google Scholar 

  83. Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H (2008) Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been carried out under project No. 08-NAN155-7 funded by KAUST (King Abdulaziz City for Science and Technology) through the Long Term Comprehensive National Plan for Science, Technology and Innovation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Irfan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Sehemi, A.G., Irfan, A. & Asiri, A.M. The DFT investigations of the electron injection in hydrazone-based sensitizers. Theor Chem Acc 131, 1199 (2012). https://doi.org/10.1007/s00214-012-1199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1199-6

Keywords

Navigation